

Savvas is proud to partner with Pearson to offer the best in AP, honors, and electives products.

A Correlation of

Conceptual Integrated Science 3rd Edition ©2020

To the

Next Generation Science Standards Physical, Life, and Earth & Space Sciences Grades 9-12 Performance Expectations

Table of Contents

Physical Sciences	3
Life Sciences	8
Earth and Space Sciences	12

Copyright © 2020 Savvas Learning Company LLC All Rights Reserved. **Savvas**[™] and **Savvas Learning Company**[™] are the exclusive trademarks of Savvas Learning Company LLC in the US and in other countries.

PEARSON, MYLAB, MYMATHLAB, MATHXL, MASTERING, STATCRUNCH and the Pearson Logo are trademarks owned and/or registered by Pearson plc and/or its affiliates. All other third party marks are the property of their respective owners. Copyright in the works referenced herein is owned by Pearson Education, Inc.

A Correlation of Conceptual Integrated Science 3rd Edition ©2020 to the Next Generation Science Standards High School Physical, Life, and Earth & Space Sciences

Performance Expectations for High School (Grades 9-12)

Next Generation Science Standards Grades 9-12 Performance Expectations	Conceptual Integrated Science 3 rd Edition ©2020
Physical Sciences	
(HS-PS1) Matter and Its Interactions	1
(HS-PS1-1) Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms.	SE/TE: Chapter 9 Atoms and the Periodic Table, 9.1 The Elements, 212–213 Chapter 9 Atoms and the Periodic Table, 9.3 The Periodic Table, 216–212 Chapter 9 Atoms and the Periodic Table, READING CHECK QUESTIONS (COMPREHENSION) 9.3 The Periodic Table, Questions 7–9, p. 231
(HS-PS1-2) Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties.	SE/TE: Chapter 13 Chemical Reactions, 13.1 Chemical Equations, 327–328 Chapter 13 Chemical Reactions, 13.2 Energy and Chemical Reactions, 328–332 Chapter 13 Chemical Reactions, 13.6 Losing and Gaining Electrons, 348–350 Chapter 13 Chemical Reactions, READING CHECK QUESTIONS (COMPREHENSION) 13.1 Chemical Equations, Questions 1–3, p. 355 Chapter 13 Chemical Reactions, READING CHECK QUESTIONS (COMPREHENSION) 13.2 Energy and Chemical Reactions, Questions 4–6, p. 355 Chapter 13 Chemical Reactions, READING CHECK QUESTIONS (COMPREHENSION) 13.2 Energy and Chemical Reactions, READING CHECK QUESTIONS (COMPREHENSION) 13.6 Losing and Gaining Electrons, Questions 16–18, p. 356
(HS-PS1-3) Plan and conduct an investigation to gather evidence to compare the structure of substances at the bulk scale to infer the strength of electrical forces between particles.	SE/TE: Chapter 7 Electricity and Magnetism, 7.1 Electrical Force and Charge, 144–145 Chapter 12 Chemical Bonds and Mixtures, 12.2 The lonic Bond, 290–295 Chapter 12 Chemical Bonds and Mixtures, 12.3 The Covalent Bond, 297–300 Chapter 12 Chemical Bonds and Mixtures, 12.4 Polar Covalent Bonds, 300–302 Chapter 12 Chemical Bonds and Mixtures, 12.6 Molecular Attractions, 305–310 Chapter 7 Electricity and Magnetism, 7.2 Coulomb's Law, 145–146

Next Generation Science Standards Grades 9-12 Performance Expectations	Conceptual Integrated Science 3 rd Edition ©2020
(HS-PS1-4) Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy.	SE/TE: Chapter 13 Chemical Reactions, 13.2 Energy and Chemical Reactions, 328–332 Chapter 13 Chemical Reactions, THINK AND EXPLAIN (SYNTHESIS), 13.2 Energy and Chemical Reactions, Questions 57–59, p. 359
(HS-PS1-5) Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs.	SE/TE: Chapter 13 Chemical Reactions, 13.3 Reaction Rates, 332–337 Chapter 13 Chemical Reactions, 13.2 Energy and Chemical Reactions, Integrated Science 13A EARTH SCIENCE AND BIOLOGY: Catalysts, 337–338 Chapter 13 Chemical Reactions, READING CHECK (COMPREHENSION), 13.3 Reaction Rates, Questions 7–9, 355 Chapter 13 Chemical Reactions, THINK AND EXPLAIN (SYNTHESIS), 13.3 Reaction Rates, Questions 60–64, p. 359
(HS-PS1-6) Refine the design of a chemical system by specifying a change in conditions that would produce increased amounts of products at equilibrium.	SE/TE: Appendix F Chemical Equilibrium, A-21–A–23 Chapter 13 Chemical Reactions, 13.1 Chemical Equations, 327–328
(HS-PS1-7) Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction.	SE/TE: Chapter 13 Chemical Reactions, 13.1 Chemical Equations, 327–328 Chapter 13 Chemical Reactions, READING CHECK (COMPREHENSION) 13.1 Chemical Equations, Questions 1–3, p. 355 Chapter 13 Chemical Reactions, THINK AND EXPLAIN (SYNTHESIS) 13.1 Chemical Equations, Questions 50–56, p. 358–359
(HS-PS1-8) Develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive decay.	SE/TE: Chapter 10 The Atomic Nucleus and Radioactivity, 10.1 Radioactivity, 238–240 Chapter 10 The Atomic Nucleus and Radioactivity, 10.2 The Strong Nuclear Force. 242–244 Chapter 10 The Atomic Nucleus and Radioactivity, 10.4 Nuclear Fission, 249–254 Chapter 10 The Atomic Nucleus and Radioactivity, 10.5 Mass–Energy Equivalence, Integrated Science 10C Astronomy: Nuclear Fusion, 257–259

Next Generation Science Standards Grades 9-12 Performance Expectations	Conceptual Integrated Science 3 rd Edition ©2020
(HS-PS2) Motion and Stability: Forces and Interact (HS-PS2-1) Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.	SE/TE: Chapter 3 Newton's Laws of Motion, 3.2 Newton's Second Law of Motion, 42–48 Chapter 3 Newton's Laws of Motion, READING CHECK QUESTIONS (COMPREHENSION), 3.2 Newton's Second Law of Motion, Questions 3–10, p. 60 Chapter 3 Newton's Laws of Motion, THINK AND EXPLAIN (SYNTHESIS), Newton's Second Law of Motion, Questions 63–71, p. 63
(HS-PS2-2) Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system.	SE/TE: Chapter 4 Momentum and Energy, 4.4 Conservation of Momentum, 72–73 Chapter 4 Momentum and Energy, READING CHECK QUESTIONS (COMPREHENSION), 4.1 Momentum, Questions 1–2, p. 86 Chapter 4 Momentum and Energy, THINK AND EXPLAIN (SYNTHESIS), 4.1 Momentum, Questions 68–69, p. 89 Chapter 4 Momentum and Energy, THINK AND DISCUSS (EVALUATION), Questions 103 & 107, p. 90 Chapter 4 Momentum and Energy, 4.3 Impulse– Momentum Relationship, 69–70
(HS-PS2-3) Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.	SE/TE: Chapter 4 Momentum and Energy, 4.4 Conservation of Momentum, Collisions, 73 Chapter 4 Momentum and Energy, 4.5 Energy, MATH CONNECTION: Quantifying Collisions, 74
(HS-PS2-4) Use mathematical representations of Newton's Law of Gravitation and Coulomb's Law to describe and predict the gravitational and electrostatic forces between objects.	SE/TE: Chapter 5 Gravity, 5.2 Newton's Law of Universal Gravitation, 93–95 Chapter 7 Electricity and Magnetism, 7.2 Coulomb's Law, 145–146
(HS-PS2-5) Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current.	SE/TE: Chapter 7 Electricity and Magnetism, 7.13 Magnetic Fields, Electric Currents and Magnetic Fields, 159–160
(HS-PS2-6) Communicate scientific and technical information about why the molecular-level structure is important in the functioning of designed materials.	SE/TE: Chapter 7 Electricity and Magnetism, 7.5 Conductors and Insulators, 149 Chapter 12 Chemical Bonds and Mixtures, 12.6 Molecular Attractions, 305–310

Next Generation Science Standards Grades 9-12 Performance Expectations	Conceptual Integrated Science 3 rd Edition ©2020
(HS-PS3) Energy	<u> </u>
(HS-PS3-1) Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.	SE/TE: Chapter 4 Momentum and Energy, 4.7 Potential Energy, 76–77 Chapter 4 Momentum and Energy, 4.8 Kinetic Energy, 77–78 Chapter 7 Electricity and Magnetism, 7.3 Electric Field, 146–147 Chapter 7 Electricity and Magnetism, 7.4 Electric Potential, 147–148
(HS-PS3-2) Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motion of particles (objects) and energy associated with the relative position of particles (objects).	SE/TE: Chapter 4 Momentum and Energy, 4.10 Conservation of Energy, 81–82 Chapter 4 Momentum and Energy, 4.10 Conservation of Energy, Integrated Science 4B BIOLOGY AND CHEMISTRY: Glucose: Energy for Life, 82–83
(HS-PS3-3) Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.	SE/TE: Chapter 4 Momentum and Energy, 4.11 Machines, 83–84
(HS-PS3-4) Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics).	SE/TE: Chapter 6 Heat, 6.5 Laws of Thermodynamics, 121–122 Chapter 6 Heat, READING CHECK QUESTIONS (COMPREHENSION), 6.5 The Laws of Thermodynamics, Question 14, 138
(HS-PS3-5) Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction.	SE/TE: Chapter 7 Electricity and Magnetism, 7.1 Electrical Force and Charge, 144–145 Chapter 7 Electricity and Magnetism, 7.3 Electric Field, 146–147 Chapter 7 Electricity and Magnetism, 7.13 Magnetic Fields, 158–160 Chapter 7 Electricity and Magnetism, READING CHECK QUESTIONS (COMPREHENSION), 7.3 Electric Field, Questions 5–6, p. 167 Chapter 7 Electricity and Magnetism, READING CHECK QUESTIONS (COMPREHENSION), 7.13 Magnetic Fields, Questions 25–26, p. 167

Next Generation Science Standards Grades 9-12 Performance Expectations	Conceptual Integrated Science 3 rd Edition ©2020
(HS-PS4) Waves and Their Applications in Techno (HS-PS4-1) Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media.	logies for Information Transfer SE/TE: Chapter 8 Waves–Sound and Light, 8.4 The Nature of Sound, Speed of Sound, 177–178 Chapter 8 Waves–Sound and Light, 8.4 The Nature of Light, 180–181 Chapter 8 Waves–Sound and Light, 8.8 Transparent and Opaque Materials, 184–186 Chapter 22 Plate Tectonics: The Earth System, 22.2 Earth's Structural Layers, Integrated Science 22C PHYSICS: Using Seismology to Explore Earth's Interior, 636–637
(HS-PS4-2) Evaluate questions about the advantages of using digital transmission and storage of information.	SE/TE: This standard is beyond the scope of the Conceptual Integrated Science program.
(HS-PS4-3) Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model, and that for some situations one model is more useful than the other.	SE/TE: Chapter 8 Waves- Sound and Light, 8.14 The Wave-Particle Duality, 197–198 Chapter 8 Waves- Sound and Light, READING CHECK QUESTIONS (COMPREHENSION), 8.14 The Wave-Particle Duality, Questions 30–32, p. 200 Chapter 8 Waves- Sound and Light, THINK AND EXPLAIN (SYNTHESIS), 8.14, The Wave- Particle Duality, Questions 101–103, p. 203
(HS-PS4-4) Evaluate the validity and reliability of claims in published materials of the effects that different frequencies of electromagnetic radiation have when absorbed by matter.	SE/TE: Chapter 9 Atoms and the Periodic Table, 9.5 The Quantum Hypothesis, 225–227 Chapter 10 The Atomic Nucleus and Radioactivity, 10.1 Radioactivity, Integrated Science 10A BIOLOGY: Radiation Dosage, 240– 242
(HS-PS4-5) Communicate technical information about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy.	SE/TE: Chapter 8 Waves–Sound and Light, 8.1 Vibrations and Waves, TECHNOLOGY: Broadcasting Electromagnetic Waves, 175 Chapter 8 Waves–Sound and Light, 8.5 Resonance, TECHNOLOGY: Fractal Antennas, 180 Chapter 8 Waves–Sound and Light, 8.7 Reflection, Diffuse Reflection, 183 Chapter 8 Waves–Sound and Light, 8.7 Reflection, Reflection of Sound, 183

Next Generation Science Standards Grades 9-12 Performance Expectations	Conceptual Integrated Science 3 rd Edition ©2020
Life Sciences	
(HS-LS1) From Molecules to Organisms: Structure	s and Processes
(HS-LS1-1) Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins, which carry out the essential functions of life through systems of specialized cells.	SE/TE: Chapter 16 Genetics, 16.2 Chromosomes: Packages of Genetic Information, 432–433 Chapter 16 Genetics, 16.2 Chromosomes: Packages of Genetic Information, Integrated Science 16A CHEMISTRY: The Structure of DNA, 434–435
(HS-LS1-2) Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms.	SE/TE: Chapter 19 Human Biology I–Control and Development, 19.4 The Nervous System, 536– 538 Chapter 20 Human Biology II–Care and Maintenance, 20.1 Integration of Body Systems, 564 Chapter 20 Human Biology II–Care and Maintenance, 20.2 The Circulatory System, 564– 566 Chapter 20 Human Biology II–Care and Maintenance, 20.3 Respiration, 569–570 Chapter 20 Human Biology II–Care and Maintenance, 20.4 Digestion, 571–574 Chapter 20 Human Biology II–Care and Maintenance, 20.6 Excretion and Water Balance, 576–577
(HS-LS1-3) Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis.	SE/TE: Chapter 19 Human Biology I–Control and Development, 19.2 Homeostasis, 532 Chapter 19 Human Biology I–Control and Development, READING CHECK (COMPREHENSION), 19.2 Homeostasis, Questions 4–5, p. 558 Chapter 19 Human Biology I–Control and Development, THINK AND EXPLAIN (SYNTHESIS), 19.2 Homeostasis, Questions 52– 55, p. 560
(HS-LS1-4) Use a model to illustrate the role of cellular division (mitosis) and differentiation in producing and maintaining complex organisms.	SE/TE: Chapter 15 The Basic Unit of Life–The Cell, 15.7 How Cells Reproduce, 414–416 Chapter 15 The Basic Unit of Life–The Cell, READING CHECK (COMPREHENSION), 15.7 How Cells Reproduce, Questions 18–20, 426 Chapter 15 The Basic Unit of Life–The Cell, THINK AND EXPLAIN (SYNTHESIS), 15.7 How Cells Reproduce, Questions 77–78, 428

Next Generation Science Standards Grades 9-12 Performance Expectations	Conceptual Integrated Science 3 rd Edition ©2020
(HS-LS1-5) Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy.	SE/TE: Chapter 15 The Basic Unit of Life–The Cell, 15.8 How Cells Use Energy, INTEGRATED SCIENCE 15D PHYSICS AND CHEMISTRY: Photosynthesis, 420–422
(HS-LS1-6) Construct and revise an explanation based on evidence for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large carbon-based molecules.	SE/TE: Chapter 15 The Basic Unit of Life–The Cell, 15.1 Characteristics of Life, INTEGRATED SCIENCE 15A CHEMISTRY: The Big Molecules that Make Up Life, 400–402
(HS-LS1-7) Use a model to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and the bonds in new compounds are formed, resulting in a net transfer of energy.	SE/TE: Chapter 15 The Basic Unit of Life–The Cell, 15.8 How Cells Use Energy, INTEGRATED SCIENCE 15C CHEMISTRY: ATP and Chemical Reaction in Cells, 417–420 Chapter 15 The Basic Unit of Life–The Cell, 15.8 How Cells Use Energy, INTEGRATED SCIENCE 15E CHEMISTRY: Cellular Respiration and Fermentation, 423–425
(HS-LS2) Ecosystems: Interactions, Energy, and D	ynamics
(HS-LS2-1) Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity of ecosystems at different scales.	SE/TE: Chapter 21 Ecology, 21.2 Population Ecology, 594–597 Chapter 21 Ecology, THINK AND EXPLAIN (SYNTHESIS), 21.2 Population Ecology, Questions 50–51, p. 621 Chapter 21 Ecology, THINK AND DISCUSS (EVALUATION), Questions 97–98, p. 623
(HS-LS2-2) Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.	SE/TE: Chapter 21 Ecology, 21.2 Population Ecology, 594–597 Chapter 21 Ecology, 21.3 Human Population Growth, 597–599 Chapter 21 Ecology, READING CHECK QUESTIONS (COMPREHENSION), 21.2 Population Ecology, Questions 4–7, p. 619 Chapter 21 Ecology, READING CHECK QUESTIONS (COMPREHENSION), 21.3 Human Population Growth, Questions 8–10. p. 619 Chapter 21 Ecology, THINK AND EXPLAIN (SYNTHESIS), 21.2 Population Ecology, Questions 48–55, p. 621 Chapter 21 Ecology, THINK AND EXPLAIN (SYNTHESIS), 21.3 Human Population Growth, Questions 56–60, p. 621–622

Next Generation Science Standards Grades 9-12 Performance Expectations	Conceptual Integrated Science 3 rd Edition ©2020
(HS-LS2-3) Construct and revise an explanation based on evidence for the cycling of matter and flow of energy in aerobic and anaerobic conditions.	SE/TE: Chapter 15 The Basic Unit of Life–The Cell, 15.8 How Cells Use Energy, INTEGRATED SCIENCE 15D PHYSICS AND CHEMISTRY: Photosynthesis, 420–422 Chapter 15 The Basic Unit of Life–The Cell, 15.8 How Cells Use Energy, INTEGRATED SCIENCE 15E CHEMISTRY: Cellular Respiration and Fermentation, 423–425
(HS-LS2-4) Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.	SE/TE: Chapter 21 Ecology, 21.4 Species Interactions, Food Chains and Food Webs, 599–601 Chapter 21 Ecology, 21.4 Species Interactions, Integrated Science 21B CHEMISTRY AND EARTH SCIENCE: Matter Cycling in Ecosystems, 610–613 Chapter 21 Ecology, 21.4 Species Interactions, Integrated Science 21C PHYSICS: Energy Flow in Ecosystems, 613–615 Chapter 21 Ecology, 21.4 Species Interactions, Integrated Science 21D PHYSICS: AND CHEMISTRY: Energy Leaks When Organisms Eat, 615–616
(HS-LS2-5) Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.	SE/TE: Chapter 15 The Basic Unit of Life–The Cell, 15.8 How Cells Use Energy, INTEGRATED SCIENCE 15D PHYSICS AND CHEMISTRY: Photosynthesis, 420–422
(HS-LS2-6) Evaluate claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem.	SE/TE: Chapter 21 Ecology, 21.5 Change in an Ecosystem, 616–618 Chapter 21 Ecology, READING CHECK QUESTIONS (COMPREHENSION), 21.5 Change in an Ecosystem, Questions 16–19, p. 619
(HS-LS2-7) Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.	SE/TE: Chapter 21 Ecology, 21.3 Human Population Growth, Ecological Footprint, 598–599 Chapter 21 Ecology, 21.4 Species Interactions, SCIENCE AND SOCIETY: Invasive Species, 604
(HS-LS2-8) Evaluate evidence for the role of group behavior on individual and species' chances to survive and reproduce.	SE/TE: Chapter 17 The Evolution of Life, 17.3 Adaptation, 477–478

Next Generation Science Standards	Conceptual Integrated Science 3rd Edition ©2020
Grades 9-12 Perioritance expectations	
(HS-LS3) heredity. Inheritance and variation of that (HS-LS3-1) Ask questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspring.	SE/TE: Chapter 16 Genetics, 16.2 Chromosomes: Packages of Genetic Information, 432–433
(HS-LS3-2) Make and defend a claim based on evidence that inheritable genetic variations may result from (1) new genetic combinations through meiosis, (2) viable errors occurring during replication, and/or (3) mutations caused by environmental factors.	SE/TE: Chapter 16 Genetics, 16.5 Genetic Mutations, 441–442 Chapter 16 Genetics, 16.5 Genetic Mutations, Integrated Science 16C PHYSICS: How Radioactivity Causes Genetic Mutations, 443–444 Chapter 16 Genetics, 16.6 Meiosis and Genetic Diversity, 444–446
(HS-LS3-3) Apply concepts of statistics and probability to explain the variation and distribution of expressed traits in a population.	SE/TE: Chapter 16 Genetics, 16.7 Mendelian Inheritance, 446–450 Chapter 16 Genetics, 16.8 More Wrinkles: Beyond Mendelian Inheritance, 450–453
(HS-LS4) Biological Evolution: Unity and Diversity	
(HS-LS4-1) Communicate scientific information that common ancestry and biological evolution are supported by multiple lines of empirical evidence.	SE/TE: Chapter 17 The Evolution of Life, 17.6 Evidence of Evolution, 486–489 Chapter 17 The Evolution of Life, 17.6 Evidence of Evolution, Integrated Science 17D EARTH SCIENCE: Fossils: Earth's Tangible Evidence of Evolution, 489–491
(HS-LS4-2) Construct an explanation based on evidence that the process of evolution primarily results from four factors: (1) the potential for a species to increase in number, (2) the heritable genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for limited resources, and (4) the proliferation of those organisms that are better able to survive and reproduce in the environment.	SE/TE: Chapter 17 The Evolution of Life, 17.2 How Natural Selection Works, 474–476 Chapter 17 The Evolution of Life, 17.3 Adaptation, 477–478 17.4 Evolution and Genetics, 480–483
(HS-LS4-3) Apply concepts of statistics and probability to support explanations that organisms with an advantageous heritable trait tend to increase in proportion to organisms lacking this trait.	SE/TE: Chapter 17 The Evolution of Life, 17.2 How Natural Selection Works, 474–476 Chapter 17 The Evolution of Life, 17.3 Adaptation, 477–478
(HS-LS4-4) Construct an explanation based on evidence for how natural selection leads to adaptation of populations.	SE/TE: Chapter 17 The Evolution of Life, 17.2 How Natural Selection Works, 474–476 Chapter 17 The Evolution of Life, 17.3 Adaptation, 477–478

Next Generation Science Standards Grades 9-12 Performance Expectations	Conceptual Integrated Science 3 rd Edition ©2020
(HS-LS4-5) Evaluate the evidence supporting claims that changes in environmental conditions may result in (1) increases in the number of individuals of some species, (2) the emergence of new species over time, and (3) the extinction of other species.	SE/TE: Chapter 21 Ecology, 21.5 Change in an Ecosystem, 616-618 Chapter 23 Rocks and Minerals, 23.9 The Rock Cycle, Integrated Science 23C BIOLOGY AND ASTRONOMY: Earth's History Is Written in Its Rocks, 676–679
(HS-LS4-6) Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.	SE/TE: Chapter 21 Ecology, 21.3 Human Population Growth, Ecological Footprint, 598–599 21.4 Species Interactions, SCIENCE AND SOCIETY: Biodiversity, Nature's Insurance Policy, 602
Earth and Space Sciences	
(HS-ESS1) Earth's Place in the Universe	
(HS-ESS1-1) Develop a model based on evidence to illustrate the life span of the sun and the role of nuclear fusion in the sun's core to release energy that eventually reaches Earth in the form of radiation.	SE/TE: Chapter 28 The Solar System, 28.2 The Sun, 815–817 Chapter 28 The Solar System, THINK AND EXPLAIN (SYNTHESIS), 28.2 The Sun, Questions 56–61, p. 840 Chapter 29, The Universe, 29.4 The Life Cycles of Stars, 850–855 Chapter 29, The Universe, THINK AND EXPLAIN (SYNTHESIS), 29.4 The Life Cycles of Stars, Questions 62–78, p. 878
(HS-ESS1-2) Construct an explanation of the Big Bang theory based on astronomical evidence of light spectra, motion of distant galaxies, and composition of matter in the universe. stars),	SE/TE: Chapter 29, The Universe, 29.7 Looking Back in Time, The Big Bang, 868–870 Chapter 29, The Universe, THINK AND EXPLAIN (SYNTHESIS), 29.7 Looking Back in Time, Questions 93–100, p. 879
(HS-ESS1-3) Communicate scientific ideas about the way stars, over their life cycle, produce elements.	SE/TE: Chapter 29 The Universe, 29.4 The Life Cycles of Stars, 850–855 Chapter 29 The Universe, THINK AND EXPLAIN (SYNTHESIS), 29.4 The Life Cycles of Stars, Questions 62–78, p. 878

Next Generation Science Standards Grades 9-12 Performance Expectations	Conceptual Integrated Science 3 rd Edition ©2020
(HS-ESS1-4) Use mathematical or computational representations to predict the motion of orbiting objects in the solar system.	SE/TE: Chapter 5 Gravity, 5.7 Fast-Moving Projectiles– Satellites, 105–107 Chapter 5 Gravity, 5.8 Circular and Elliptical Orbits, 107–108 Technology: Communications Satellites, 108 Chapter 5 Gravity, THINK AND EXPLAIN (SYNTHESIS), 5.7 Fast-Moving Projectiles, Questions 91–94, p. 115 Chapter 5 Gravity, THINK AND EXPLAIN (SYNTHESIS), 5.8 Circular and Elliptical Orbits, Questions 95–101, p. 115
(HS-ESS1-5) Evaluate evidence of the past and current movements of continental and oceanic crust and the theory of plate tectonics to explain the ages of crustal rocks.	SE/TE: Chapter 22 Plate Tectonics: The Earth System, 22.4 Seafloor Spreading–A Mechanism for Continental Drift, 639–641 Chapter 22 Plate Tectonics: The Earth System, 22.4 Seafloor Spreading–A Mechanism for Continental Drift, Integrated Science 22D PHYSICS, CHEMISTRY, AND ASTRONOMY: Magnetic Stripes–Evidence of Seafloor Spreading, 641–642 Chapter 22 Plate Tectonics: The Earth System, 22.5 The Theory of Plate Tectonics, 642–643 22.4 Seafloor Spreading–A Mechanism for Continental Drift, THINK AND EXPLAIN (SYNTHESIS), 22D–Magnetic Stripes–Evidence of Seafloor Spreading, Questions 63–65, p. 653 22.4 Seafloor Spreading–A Mechanism for Continental Drift, THINK AND EXPLAIN (SYNTHESIS), 22.5 The Theory of Plate Tectonics, Questions 66–68, p. 653
(HS-ESS1-6) Apply scientific reasoning and evidence from ancient Earth materials, meteorites, and other planetary surfaces to construct an account of Earth's formation and early history.	SE/TE: Chapter 27 Environmental Geology, 27.4 Hurricanes, Integrated Science 27A PHYSICS, BIOLOGY, ASTRONOMY: Earth's Climate Over Time, 784–787 Chapter 28 The Solar System, 28.1 The Solar System and Its Formation, 811–814

Next Generation Science Standards Grades 9-12 Performance Expectations	Conceptual Integrated Science 3 rd Edition ©2020
(HS-ESS2) Earth's Systems	
(HS-ESS2) Earth's Systems (HS-ESS2-1) Develop a model to illustrate how Earth's internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features.	SE/TE: Chapter 22 Plate Tectonics: The Earth System, 22.4 Seafloor Spreading–A Mechanism for Continental Drift, 639–640 Chapter 22 Plate Tectonics: The Earth System, 22.5 The Theory of Plate Tectonics, Integrated Science 22E Physics: What Forces Drive the Plates?, 643–644 Chapter 22 Plate Tectonics: The Earth System, 22.6 Plate Boundaries, 644–647 Chapter 22 Plate Tectonics: The Earth System, THINK AND EXPLAIN (SYNTHESIS), 22.4 Seafloor Spreading–A Mechanism for Continental Drift, Questions 60–61, p. 652 Chapter 22 Plate Tectonics: The Earth System, THINK AND EXPLAIN (SYNTHESIS), 22E–What Forces Drive the Plates?, Questions 69–71, p. 653 Chapter 22 Plate Tectonics: The Earth System, THINK AND EXPLAIN (SYNTHESIS), 22.6 Plate Boundaries, Questions 72–78, p. 653 Chapter 25, Surface Processes, 25.1 Processes that Sculpt Earth: Weathering, Erosion, and Deposition, 712–713 Chapter 25, Surface Processes, 25.1 Processes That Sculpt Earth: Weathering, Erosion, and Deposition, Integrated Science 25A PHYSICS, CHEMISTRY, AND BIOLOGY. Weathering, 714– 717
(HS-ESS2-2) Analyze geoscience data to make the claim that one change to Earth's surface can create feedbacks that cause changes to other Earth systems.	SE/TE: Chapter 27 Environmental Geology, 27.4 Hurricanes, Integrated Science 27C PHYSICS, CHEMISTRY, BIOLOGY, AND ASTRONOMY, Climate Change Today, 793–796 Chapter 27 Environmental Geology, 27.4 Hurricanes, Integrated Science 27D PHYSICS, CHEMISTRY, BIOLOGY, Responding to Climate Change, Current and Future Effects of Climate Change, 796–797 Chapter 27 Environmental Geology, 27.4 Hurricanes, Integrated Science 27D PHYSICS, CHEMISTRY, BIOLOGY, Responding to Climate Change, 796–797

Next Generation Science Standards Grades 9-12 Performance Expectations	Conceptual Integrated Science 3 rd Edition ©2020
(HS-ESS2-3) Develop a model based on evidence of Earth's interior to describe the cycling of matter by thermal convection.	SE/TE: Chapter 22 Plate Tectonics: The Earth System, 22.1 Earth's Crust, Mantle, Core, 631–632 Chapter 22 Plate Tectonics: The Earth System, 22.1 Earth's Crust, Mantle, and Core, Integrated Science 22A PHYSICS AND CHEMISTRY, Differentiation, 632–633 Chapter 22 Plate Tectonics: The Earth System, 22.2 Earth's Structural Layers, 634-636 Chapter 22 Plate Tectonics: The Earth System, 22.2 Earth's Structural Layers, Integrated Science 22C PHYSICS, Using Seismology to Explore Earth's Interior, 636–637 Chapter 22 Plate Tectonics: The Earth System, 22.4 Seafloor Spreading–A Mechanism for Continental Drift, 639–640 Chapter 22 Plate Tectonics: The Earth System, 22.4 Seafloor Spreading–A Mechanism for Continental Drift, Integrated Science 22D PHYSICS, CHEMISTRY, AND ASTRONOMY, Magnetic Stripes–Evidence of Seafloor Spreading, 641–642
(HS-ESS2-4) Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.	SE/TE: Chapter 27 Environmental Geology, 27.4 Hurricanes, Integrated Science 27A PHYSICS, BIOLOGY, ASTRONOMY, Earth's Climate Over Time, 784–787 Chapter 27 Environmental Geology, 27.4 Hurricanes, Integrated Science 27A PHYSICS, BIOLOGY, ASTRONOMY, Earth's Current Climate, 787–788 Chapter 27 Environmental Geology, 27.4 Hurricanes, Integrated Science 27B PHYSICS, CHEMISTRY, BIOLOGY, ASTRONOMY: Why Does Climate Change? 788–792 Chapter 27 Environmental Geology, 27.4 Hurricanes, Integrated Science 27C PHYSICS, CHEMISTRY, BIOLOGY, AND ASTRONOMY: Climate Change Today, 793–796

Next Generation Science Standards Grades 9-12 Performance Expectations	Conceptual Integrated Science 3 rd Edition ©2020
(HS-ESS2-5) Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes. \	SE/TE: Chapter 23 Rocks and Minerals, 23.9 The Rock Cycle, 675–676 Chapter 25 Surface Processes, 25.1 Processes that Sculpt Earth: Weathering, Erosion, and Deposition, Integrated Science 25A PHYSICS, CHEMISTRY, AND BIOLOGY: Weathering, 714– 717 Chapter 25 Surface Processes, 25.2 Change Agent: Running Water, 719–723 Chapter 25 Surface Processes, 25.3 Change Agent: Glaciers, 725–726 Chapter 25 Surface Processes, 25.3 Change Agent: Glaciers, Integrated Science 25C Physics, Change Agent: Gravity, 727–728 Chapter 25 Surface Processes, 25.4 Change Agent: Groundwater, 728–730 Chapter 25 Surface Processes, 25.3 Change Agent: Groundwater, 728–730 Chapter 25 Surface Processes, 25.3 Change Agent: Ocean Waves, 730–731
(HS-ESS2-6) Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.	SE/TE: Chapter 21 Ecology, 21.4 Species Interactions, Integrated Science 21B CHEMISTRY AND EARTH SCIENCE, Materials Cycling in Ecosystems, Carbon, 612 THINK INTEGRATED SCIENCE, 21C–Energy Flow in Ecosystems. Question 27, p. 620
(HS-ESS2-7) Construct an argument based on evidence about the simultaneous coevolution of Earth's systems and life on Earth.	SE/TE: Chapter 17 The Evolution of Life, Integrated Science 17A CHEMISTRY, EARTH SCIENCE, AND ASTRONOMY, The Origin of Life, 469–470 Chapter 17 The Evolution of Life, 17.2 How Natural Selection Works, History of Science: The Peppered Moth, 476

Next Generation Science Standards Grades 9-12 Performance Expectations	Conceptual Integrated Science 3 rd Edition ©2020
(HS-ESS3) Earth and Human Activity (HS-ESS3-1) Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human	SE/TE: Chapter 21 Ecology, 21.3 Human Population Growth, Ecological Footprint, 598–599 Chapter 21 Ecology, 21.5 Change in an
activity.	Ecosystem, 616–618 Chapter 27 Environmental Geology, 27.1 Earthquakes, 772 Chapter 27 Environmental Geology, 27.1 Earthquakes, Earthquake Measurement, 773–774 Chapter 27 Environmental Geology, 27.2 Tsunami, 775–777 Chapter 27 Environmental Geology, 27.3 Volcanic Eruptions, 778–780 Chapter 27 Environmental Geology, 27.4 Hurricanes, 780–783 Chapter 27 Environmental Geology, 27.4 Hurricanes, Integrated Science 27D PHYSICS, CHEMISTRY, BIOLOGY: Responding to Climate Change, Current and Future Effects of Climate Change, 796–797
(HS-ESS3-2) Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost- benefit ratios.	SE/TE: Chapter 27 Environmental Geology, 27.4 Hurricanes, Integrated Science 27D PHYSICS, CHEMISTRY, BIOLOGY: Responding to Climate Change, Climate Change Mitigation and Adaptation, 798–799
(HS-ESS3-3) Create a computational simulation to illustrate the relationships among the management of natural resources, the sustainability of human populations, and biodiversity.	SE/TE: Chapter 24 Earth's Surface–Land and Water, 24.7 Glaciers, Integrated Science 24C PHYSICS, CHEMISTRY, BIOLOGY: Water Pollution, 703– 705 Chapter 24 Earth's Surface–Land and Water, 24.7 Glaciers, SCIENCE AND SOCIETY: Land-Use Planning and Urban Sprawl, 706

Next Generation Science Standards High School Physical, Life, and Earth & Space Sciences Performance Expectations for High School (Grades 9-12)

Next Generation Science Standards Grades 9-12 Performance Expectations	Conceptual Integrated Science 3 rd Edition ©2020
(HS-ESS3-4) Evaluate or refine a technological solution that reduces impacts of human activities on natural systems.	SE/TE: Chapter 27 Environmental Geology, 27.4 Hurricanes, Integrated Science 27D PHYSICS, CHEMISTRY, BIOLOGY: Responding to Climate Change, Current and Future Effects of Climate Change, 796–797 Chapter 27 Environmental Geology, 27.4 Hurricanes, Integrated Science 27D PHYSICS, CHEMISTRY, BIOLOGY: Responding to Climate Change, Climate Change Mitigation and Adaptation, 798–799 Chapter 24 Earth's Surface–Land and Water, 24.7 Glaciers, Integrated Science 24C PHYSICS, CHEMISTRY, BIOLOGY: Water Pollution, 703– 705 Chapter 24 Earth's Surface–Land and Water, 24.7 Glaciers, SCIENCE AND SOCIETY: Land-Use Planning and Urban Sprawl, 706
(HS-ESS3-5) Analyze geoscience data and the results from global climate models to make an evidence-based forecast of the current rate of global or regional climate change and associated future impacts to Earth's systems.	SE/TE: Chapter 27 Environmental Geology, 27.4 Hurricanes, Integrated Science 27C PHYSICS, CHEMISTRY, BIOLOGY, AND ASTRONOMY: Climate Change Today. 793–796 Chapter 27 Environmental Geology, 27.4 Hurricanes, Integrated Science 27D PHYSICS, CHEMISTRY, BIOLOGY: Responding to Climate Change, Current and Future Effects of Climate Change, 796–797
(HS-ESS3-6) Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.	SE/TE: Chapter 17 The Evolution of Life, Integrated Science 17A CHEMISTRY, EARTH SCIENCE, AND ASTRONOMY: The Origin of Life, 469–470 Chapter 27 Environmental Geology, 27.4 Hurricanes, Integrated Science 27C PHYSICS, CHEMISTRY, BIOLOGY, AND ASTRONOMY: Climate Change Today. 793–796 Chapter 27 Environmental Geology, 27.4 Hurricanes, Integrated Science 27D PHYSICS, CHEMISTRY, BIOLOGY: Responding to Climate Change, Current and Future Effects of Climate Change, 796–797

©2020 Savvas Learning Company LLC