

Savvas Learning Company is the official distributor for Pearson in offering effective, hands-on content in AP, Honors, and Electives programs to K-12 schools and districts.

A Correlation of

Chemistry: The Central Science

15th Edition, AP® Edition © 2023

To the

AP® Chemistry Course and Exam Description Dated Fall 2020

AP® is a trademark registered and/or owned by the College Board, which was not involved in the production of, and does not endorse, this product.

A Correlation of Chemistry: The Central Science, 15e, AP® Edition, ©2023 to the College Board AP® Chemistry Course and Exam Description Dated Fall 2020

Upon publication, this text was correlated to the College Board's AP® Chemistry Course and Exam Description dated Fall 2020. We continually monitor the College Board's AP® Course and Exam Descriptions for updates.

For the most current correlation for this textbook, visit Savvas.com/AdvancedCorrelations.

Table of Contents

Big Ideas in Chemistry	2
Content Unit and Chapter Correlation	3
Unit 1: Atomic Structure and Properties (8 Topics)	4
Unit 2: Molecular and Ionic Compound Structure and Properties (7 Topics)	6
Unit 3: Intermolecular Forces and Properties (12 Topics)	8
Unit 4: Chemical Reactions (9 Topics)	11
Unit 5: Kinetics (11Topics)	14
Unit 6: Thermodynamics (10 Topics)	16
Unit 7: Equilibrium (14 Topics)	18
Unit 8: Acids and Bases (10 Topics)	21
Unit 9: Applications of Thermodynamics (10 Topics)	23

The units above reflect the College Board's AP® Chemistry Course and Exam Description.

Copyright ©2022 Savvas Learning Company LLC All Rights Reserved. **Savvas®** and **Savvas Learning Company®** are the exclusive trademarks of Savvas Learning Company LLC in the US and in other countries.

MYLAB®, MYMATHLAB®, MASTERING®, MATHXL®, STATCRUNCH®, REVEL® and the PEARSON® Logo are trademarks owned and/or registered by Pearson PLC and/or its affiliates. All other third party marks associated with these products are the property of their respective owners. Copyright in the works referenced herein is owned by Pearson Education, Inc. Pearson Education has control over the editorial content in these instructional materials.

Big Ideas in Chemistry

BIG IDEA 1: SCALE, PROPORTION, AND QUANTITY (SPQ)

Quantities in chemistry are expressed at both the macroscopic and atomic scale. Explanations, predictions, and other forms of argumentation in chemistry require understanding the meaning of these quantities, and the relationship between quantities at the same scale and across scales.

BIG IDEA 2: STRUCTURE AND PROPERTIES (SAP)

Properties of substances observable at the macroscopic scale emerge from the structures of atoms and molecules and the interactions between them. Chemical reasoning moves in both directions across these scales. Properties are predicted from known aspects of the structures and interactions at the atomic scale. Observed properties are used to infer aspects of the structures and interactions.

BIG IDEA 3: TRANSFORMATIONS (TRA)

At its heart, chemistry is about the rearrangement of matter. Understanding the details of these transformations requires reasoning at many levels as one must quantify what is occurring both macroscopically and at the atomic level during the process. This reasoning can be as simple as monitoring amounts of products made or as complex as visualizing the intermolecular forces among the species in a mixture. The rate of a transformation is also of interest, as particles must move and collide to initiate reaction events.

BIG IDEA 4: ENERGY (ENE)

Energy has two important roles in characterizing and controlling chemical systems. The first is accounting for the distribution of energy among the components of a system and the ways that heat exchanges, chemical reactions, and phase transitions redistribute this energy. The second is in considering the enthalpic and entropic driving forces for a chemical process. These are closely related to the dynamic equilibrium present in many chemical systems and the ways in which changes in experimental conditions alter the positions of these equilibria.

Correlation of the AP® Chemistry Content Units with *Chemistry: The Central Science*

The AP® Chemistry Course and Exam Description (CED) outlines the course content around nine Content Units, four Big Ideas, and 91 Learning Objectives. The chapters listed under each of the following content units identify where in this book you can find the explanations and practice you need to master the corresponding chemistry content. The approximate exam weight in percent is given for each content unit.

Unit 1: Atomic Structure and Properties 7–9%

Chapter 1: Introduction: Matter, Energy and Measurement

Chapter 2: Atoms, Molecules and Ions Chapter 6: Electronic Structure of Atoms

Chapter 7: Periodic Properties of the Elements

Unit 2: Molecular and Ionic Compound Structure and Properties 7–9%

Chapter 8: Basic Concepts of Chemical Bonding

Chapter 9: Molecular Geometry and Bonding Theories

Unit 3: Intermolecular Forces and Properties 18–22%

Chapter 10: Gases

Chapter 11: Liquids and Intermolecular Forces

Chapter 12: Solids and Modern Materials

Chapter 13: Properties of Solutions

Unit 4: Chemical Reactions 7–9%

Chapter 3: Chemical Reactions and Reaction Stoichiometry

Chapter 4: Reactions in Aqueous Solution

Unit 5: Kinetics 7–9%

Chapter 14: Chemical Kinetics

Unit 6: Thermodynamics 7–9%

Chapter 5: Thermochemistry

Unit 7: Equilibrium 7–9%

Chapter 15: Chemical Equilibrium

Unit 8: Acids and Bases 11–15%

Chapter 16: Acid-Base Equilibria

Chapter 17: Aqueous Equilibria: Buffers, Titrations, and Solubility

Unit 9: Applications of Thermodynamics 7–9%

Chapter 19: Chemical Thermodynamics

Chapter 20: Electrochemistry

The following tables provide a detailed analysis of how the Big Ideas, Enduring Understandings and Learning Objectives of the AP® Chemistry Course and Exam Description (CED) correlate to the requisite content in Chemistry the Central Science. The content required to master each Learning Objective is found in the indicated sections of Chemistry the Central Science.

Unit 1: Atomic Structure and Properties (8 Topics)

AP® Chemistry Course and Exam Description

Big Ideas	Enduring Understandings	Learning Objectives	Chemistry: the Central Science Sections
Scale, Proportion, and Quantity (SPQ)	SPQ-1 The mole allows different units to be compared.	SPQ-1.A. Calculate quantities of a substance or its relative number of particles using dimensional analysis and the mole concept.	1.7. Dimensional Analysis 2.4. Atomic Weights 3.4. Avogadro's number and the Mole
		SPQ-1.B. Explain the quantitative relationship between the mass spectrum of an element and the masses of the element's isotopes.	2.3. The Modern View of Atomic Structure 2.4. Atomic Weights
	SPQ-1 The mole allows different units to be compared.	SPQ-2.A Explain the quantitative relationship between the elemental composition by mass and the empirical formula of a pure substance.	3.4. Avogadro's number and the Mole 3.5. Empirical Formulas from Analysis
		SPQ-2.B Explain the quantitative relationship between the elemental composition by mass and the composition of substances in a mixture.	1.2. Classification of Matter 3.5. Empirical Formulas from Analysis

Properties (SAP) and molecule can be identif by their electr	SAP-1 Atoms and molecules can be identified by their electron distribution and energy.	SAP-1.A Represent the electron configuration of an element or ions of an element using the Aufbau principle.	6.8. Electron Configurations 6.9. Electron Configurations and the Periodic Table 7.2. Effective Nuclear Charge 7.4. Ionization Energy and Electron Affinity
		SAP-1.B Explain the relationship between the photoelectron spectrum of an atom or ion and: a. The electron configuration of the species. b. The interactions between the electrons and the nucleus.	6.9 TPWB: 6.9. Electron Configurations and the Periodic Table: Photoelectron Spectroscopy (PES)
	SAP-2 The periodic table shows patterns in electronic structure and trends in atomic properties .	SAP-2.A Explain the relationship between trends in atomic properties of elements and electronic structure and periodicity.	7.1. The Development of the Periodic Table 7.3. Sizes of Atoms and lons 7.4. Ionization Energy and Electron Affinity 8.4 Bond Polarity and Electronegativity

SAP-2.B Explain the relationship between trends in the reactivity of elements and periodicity.	TPWB: 2.8. Naming Inorganic Compounds 6.9. Electron Configurations and the Periodic Table 7.6. Trends for Group 1A and Group 2A Metals 7.7. Trends for Selected Nonmetals 8.1. Lewis Symbols and the Octet Rule
TPWB = Test Prep Work Book	

Unit 2: Molecular and Ionic Compound Structure and Properties (7 Topics)

AP® Chemistry Course and Exam Description

Big Ideas	Enduring Understandings	Learning Objectives	Chemistry: the Central Science Sections
Structure and Properties (SAP)	SAP-3 Atoms or ions bond due to interactions between them, forming molecules.	SAP-3.A Explain the relationship between the type of bonding and the properties of the elements participating in the bond.	8.2. Ionic Bonding 8.3. Covalent Bonding 8.4. Bond Polarity and Electronegativity 12.3. Metallic Solids
		SAP-3.B Represent the relationship between potential energy and distance between atoms, based on factors that influence the interaction strength.	8.2. Ionic Bonding 8.4. Bond Polarity and Electronegativity

arranged b on Lewis diagrams a Valence Sh		SAP-3.C Represent an ionic solid with a particulate model that is consistent with Coulomb's law and the properties of the constituent ions.	12.4. Ionic Solids TPWB: 8.2. Ionic Bonding
		SAP-3.D Represent a metallic solid and/or alloy using a model to show essential characteristics of the structure and interactions present in the substance.	12.2. Metallic Solids TPWB: 12.4. Metalic Bonding
	Molecular compounds are	SAP-4.A Represent a molecule with a Lewis diagram.	8.5. Drawing Lewis Structures
	diagrams and Valence Shell Electron Pair Repulsion (VSEPR)	SAP-4.B Represent a molecule with a Lewis diagram that accounts for resonance between equivalent structures or that uses formal charge to select between nonequivalent structures.	8.6. Resonance Structures

	SAP-4.C Based on the relationship between Lewis diagrams, VSEPR theory, bond orders, and bond polarities: a. Explain structural properties of molecules. b. Explain electron properties of molecules.	9.1 Molecular Shapes 9.2.The VSEPR Model 9.3. Molecular Shape and Molecular Polarity 9.5. Hybrid Orbitals
--	--	---

Unit 3: Intermolecular Forces and Properties (12 Topics)
AP® Chemistry Course and Exam Description

Big Ideas	Enduring Understandings	Learning Objectives	Chemistry: the Central Science Sections
Structure and Properties (SAP)	SAP-5 Intermolecular forces can explain the physical properties of a material.	SAP-5.A Explain the relationship between the chemical structures of molecules and the relative strength of their intermolecular forces when: a. The molecules are of the same chemical species. b. The molecules are of two different chemical species.	11.2. Intermolecular Forces 11.3. Select Properties of Liquids

	SAP-5.B Explain the relationship among the macroscopic properties of a substance, the particulate-level structure of the substance, and the interactions between these particles.	12.1. Classification and Structures of Solids 12.3. Metallic Bonding 12.4. Ionic Solids 12.5. Molecular and Covalent-Network Solids 13.1. The Solution Process
SAP-6 Matter exists in three states: solid, liquid, and gas, and their differences are influenced by variances in spacing and motion of the molecules.	SAP-6.A Represent the differences between solid, liquid, and gas phases using a particulate-level model.	10.1. Physical Characteristics of Gases 11.1. A Molecular Comparison of Gases, Liquids, and Solids
SAP-7 Gas properties are explained macroscopically— using the relationships among pressure, volume, temperature, moles, gas constant—and molecularly by the	SAP-7.A Explain the relationship between the macroscopic properties of a sample of gas or mixture of gases using the ideal gas law.	10.2. The Gas Laws 10.3. The Ideal Gas Equation 10.4. Gas Mixtures and Partial Pressures
motion of the gas.	SAP-7.B Explain the relationship between the motion of particles and the macroscopic properties of gases with: a. The kinetic molecular theory (KMT) b. A particulate model. c. A graphical representation	10.5. The Kinetic Molecular Theory of Gases 10.6. Molecular Speeds, Effusion, and Diffusion

		SAP-7.C Explain the relationship among non-ideal behaviors of gases, interparticle forces, and/or volumes.	10.7. Real Gases: Deviation from Ideal Behavior
Scale, Proportion, and Quantity (SPQ)	Proportion, between intermolecular	SPQ-3.A Calculate the number of solute particles, volume, or molarity of solutions.	13.1. The Solution Process 13.4. Expressing Solution Concentration
	separation of mixtures.	SPQ-3.B Using particulate models for mixtures: a. Represent interactions between components. b. Represent concentrations of components.	13.1. The Solution Process
		SPQ-3.C Explain the relationship between the solubility of ionic and molecular compounds in aqueous and nonaqueous solvents, and the intermolecular interactions between particles.	1.3. Properties of Matter 13.3. Factors Affecting Solubility TPWB: 13.3. Factors Affecting Solubility: Chromatography
Structure and Properties (SAP)	SAP-8 Spectroscopy can determine the structure and concentration in a mixture of a chemical species.	SAP-8.A Explain the relationship between a region of the electromagnetic spectrum and the types of molecular or electronic transitions associated with that region.	6.1. The Wave Nature of Light TPWB: 6.9. Electron Configurations and the Periodic Table: Spectroscopy

SAP-8.B Explain the properties of an absorbed or emitted photon in relationship to an electronic transition in an atom or molecule.	6.2. Quantized Energy and Photons 6.3. Line Spectra and the Bohr Model
SAP-8.C Explain the amount of light absorbed by a solution of molecules or ions in relationship to the concentration, path length, and molar absorptivity.	14.2. Rate Laws and Rate Constants: The Method of Initial Rates TPWB: 6.9. Electron Configurations and the Periodic Table, Spectroscopy

Unit 4: Chemical Reactions (9 Topics)
AP® Chemistry Course and Exam Description

Big Ideas	Enduring Understandings	Learning Objectives	Chemistry: the Central Science Sections
Transformations (TRA)	TRA-1 A substance that changes its properties, or that changes	TRA-1.A Identify evidence of chemical and physical changes in matter.	3.1. Chemical Equations 3.2. Simple Patterns of Reactivity

substa be rep by cha	into a different substance, can be represented by chemical equations.	TRA-1.B Represent changes in matter with a balanced chemical or net ionic equation: a. For physical changes. b. For given information about the identity of the reactants and/or product. c. For ions in a given chemical reaction.	3.1. Chemical Equations 3.2. Simple Patterns of Reactivity TPWB: 4.2. Precipitation Reactions: Net Ionic Equations
		TRA-1.C Represent a given chemical reaction or physical process with a consistent particulate model.	3.1. Chemical Equations
		TRA-1.D Explain the relationship between macroscopic characteristics and bond interactions for: a. Chemical processes. b. Physical processes.	4.1. General Properties of Aqueous Solutions 13.1. The Solution Process
Scale, Proportion, and Quantity (SPQ)	SPQ-4 When a substance changes into a new substance, or when its properties change, no mass is lost or gained.	SPQ-4.A Explain changes in the amounts of reactants and products based on the balanced reaction equation for a chemical process.	3.1. Chemical Equations 3.6. Quantitative Information from Balanced Equations 10.3. The Ideal Gas Equation

		SPQ-4.B Identify the equivalence point in a titration based on the amounts of the titrant and analyte, assuming the titration reaction goes to completion.	4.5. Concentrations of Solutions 4.6. Solution Stoichiometry and Chemical Analysis
Transformations (TRA)	TRA-2 A substance can change into another substance through different processes, and	TRA-2.A Identify a reaction as acid-base, oxidation-reduction, or precipitation.	4.2. Precipitation Reactions 4.3 Acids, Bases, and Neutralization Reactions 4.4. Oxidation-Reduction Reactions
	the change itself can be classified by the sort of processes that produced it.	TRA-2.B Identify species as Brønsted-Lowry acids, bases, and/or conjugate acid-base pairs, based on proton-transfer involving those species.	16.2. Conjugate Acid-Base Pairs 16.3. The Autoionization of Water 16.6. Weak Acids 16.7. Weak Bases
		TRA-2.C Represent a balanced redox reaction equation using half-reactions.	20.1. Oxidation States and Oxidation-Reduction Reactions 20.2. Balancing Redox Equations

Unit 5: Kinetics (11 Topics) AP® Chemistry Course and Exam Description

Big Ideas	Enduring Understandings	Learning Objectives	Chemistry: the Central Science Sections
Transformations (TRA)	TRA-3 Some reactions happen quickly, while others happen more slowly and depend on reactant concentrations and	TRA-3.A Explain the relationship between the rate of a chemical reaction and experimental parameters.	14.1. Reaction Rates
	temperature.	TRA-3.B Represent experimental data with a consistent rate law expression.	14.2. Rate Laws and Rate Constants: The Method of Initial Rates 14.3. Integrated Rate Laws
		TRA-3.C Identify the rate law expression of a chemical reaction using data that show how the concentrations of reaction species change over time.	14.2. Rate Laws and Rate Constants: The Method of Initial Rates 14.3. Integrated Rate Laws
	TRA-4 There is a relationship between the speed of a reaction and the collision	TRA-4.A Represent an elementary reaction as a rate law expression using stoichiometry.	14.5. Reaction Mechanisms
	frequency of particle collisions.	TRA-4.B Explain the relationship between the rate of an elementary reaction and the frequency, energy, and orientation of molecular collisions.	14.4. Temperature and Rate: Activation Energy and the Arrhenius Equation

		TRA-4.C Represent the activation energy and overall energy change in an elementary reaction using a reaction energy profile.	14.4. Temperature and Rate: Activation Energy and the Arrhenius Equation
	TRA-5 Many chemical reactions occur through a series of	TRA-5.A Identify the components of a reaction mechanism.	14.5. Reaction Mechanisms
	elementary reactions. These elementary reactions when combined form a chemical equation.	TRA-5.B Identify the rate law for a reaction from a mechanism in which the first step is rate limiting.	14.5. Reaction Mechanisms
		TRA-5.C Identify the rate law for a reaction from a mechanism in which the first step is not rate limiting.	14.5 Reaction Mechanisms
		TRA-5.D Represent the activation energy and overall energy change in a multistep reaction with a reaction energy profile.	14.5. Reaction Mechanisms
Energy (ENE)	ENE-1 The speed at which a reaction occurs can be influenced by a catalyst.	ENE-1.A Explain the relationship between the effect of a catalyst on a reaction and changes in the reaction mechanism.	14.7. Catalysis

Unit 6: Thermodynamics (10 Topics) AP® Chemistry Course and Exam Description

Big Ideas	Enduring Understandings	Learning Objectives	Chemistry: the Central Science Sections
in a substar properties of change into different substance requires an	substance requires an exchange of	ENE-2.A Explain the relationship between experimental observations and energy changes associated with a chemical or physical transformation.	5.1. The Nature of Chemical Energy 5.2. The First Law of Thermodynamics 5.3. Enthalpy 13.1. The Solution Process
	energy.	ENE-2.B Represent a chemical or physical transformation with an energy diagram.	5.1. The Nature of Chemical Energy 5.2. The First Law of Thermodynamics
	ENE-2.C Explain the relationship between the transfer of thermal energy and molecular collisions.	1.4. The Nature of Energy 5.1. The Nature of Chemical Energy	
	ENE-2.D Calculate the heat q absorbed or released by a system undergoing heating/cooling based on the amount of the substance, the heat capacity, and the change in temperature.	5.4. Enthalpies of Reaction 5.5. Calorimetry	

	ENE-2.E Explain changes in the heat q absorbed or released by a system undergoing a phase transition based on the amount of the substance in moles and the molar enthalpy of the phase transition.	5.3. Enthalpy 5.6. Hess's Law 5.7. Enthalpies of Formation
	ENE-2.F Calculate the heat q absorbed or released by a system undergoing a chemical reaction in relationship to the amount of the reacting substance in moles and the molar enthalpy of reaction.	5.6. Hess's Law
ENE-3 The energy	ENE-3.A Calculate the enthalpy change	
exchanged in a chemical transformation is required to break and form bonds.	of a reaction based on the average bond energies of bonds broken and formed in the reaction.	5.8. Bond Enthalpies
	ENE-3.B Calculate the enthalpy change for a chemical or physical process based on the standard enthalpies of formation.	5.7. Enthalpies of Formation
	ENE-3.C Represent a chemical or physical process as a sequence of steps.	5.6. Hess's Law 5.7. Enthalpies of Formation

	ENE-3.D Explain the relationship between the enthalpy of a chemical or physical process and the sum of the enthalpies of the individual steps.	5.6. Hess's Law
--	--	-----------------

Unit 7: Equilibrium (14 Topics)
AP® Chemistry Course and Exam Description

Big Ideas	Enduring Understandings	Learning Objectives	Chemistry: the Central Science Sections
Transformations (TRA)	TRA-6 Some reactions can occur in both forward and reverse directions, sometimes proceeding in each direction simultaneously.	TRA-6.A Explain the relationship between the occurrence of a reversible chemical or physical process, and the establishment of equilibrium, to experimental observations.	15.1. The Concept of Equilibrium
		TRA-6.B Explain the relationship between the direction in which a reversible reaction proceeds and the relative rates of the forward and reverse reactions.	15.2. The Equilibrium Constant 15.3. Using Equilibrium Constants

	TRA-7 A system at equilibrium depends on the relationships between concentrations, partial pressures of chemical species, and equilibrium constant K.	TRA-7.A Represent the reaction quotient Q_c or Q_p , for a reversible reaction, and the corresponding equilibrium expressions $K_c = Q_c$ or $K_p = Q_p$.	15.6. Some Applications of Equilibrium Constants
		TRA-7.B Calculate K _c or K _p based on experimental observations of concentrations or pressures at equilibrium.	15.5. Calculating Equilibrium Constants
		TRA-7.C Explain the relationship between very large or very small values of K and the relative concentrations of chemical species at equilibrium.	15.3. Using Equilibrium Constants 15.6. Some Applications of Equilibrium Constants
	TRA-7.D Represent a multistep process with an overall equilibrium expression, using the constituent K expressions for each individual reaction.	15.3. Using Equilibrium Constants	
	TRA-7.E Identify the concentrations or partial pressures of chemical species at equilibrium based on the initial conditions and the equilibrium constant.	15.6. Some Applications of Equilibrium Constants	

		TRA-7.F Represent a system undergoing a reversible reaction with particulate model.	15.3. Using Equilibrium Constants
	TRA-8 Systems at equilibrium respond to external stresses to offset the effect of the	TRA-8.A Identify the response of a system at equilibrium to an external stress, using Le Châtelier's principle.	15.7. Le Châtelier's Principle
	stress.	TRA-8.B Explain the relationships between Q, K, and the direction in which a reversible reaction will proceed to reach equilibrium.	15.6. Some Applications of Equilibrium Constants 15.7. Le Châtelier's Principle
Scale, Proportion and Quantity (SPQ)	SPQ-5 The dissolution of a salt is a reversible	SPQ-5.A Calculate the solubility of a salt based on the value of K _{sp} for the salt.	17.4. Solubility Equilibria
	process that can be influenced by environmental factors such as pH or other dissolved ions.	SPQ-5.B Identify the solubility of a salt, and/or the value of K _{sp} for the salt, based on the concentration of a common ion already present in solution.	17.5. Factors that Affect Solubility
		SPQ-5.C Identify the qualitative effect of changes in pH on the solubility of a salt.	17.5. Factors that Affect Solubility

	SPQ-5.D Explain the relationship between the solubility of a salt and changes in the enthalpy and entropy that occur in the dissolution process.	13.1. The Solution Process
--	--	----------------------------

Unit 8: Acids and Bases (10 Topics)
AP® Chemistry Course and Exam Description

Big Ideas	Enduring Understandings	Learning Objectives	Chemistry: the Central Science Sections
Structure and Properties (SAP)	SAP-9 The chemistry of acids and bases involves reversible proton-transfer reactions, with equilibrium concentrations being related to the strength of the acids and bases involved.	SAP-9.A Calculate the values of pH and pOH, based on K _w and the concentration of all species present in a neutral solution of water.	16.3. The Autoionization of Water 16.4. The pH Scale
		SAP-9.B Calculate pH and pOH based on concentrations of all species in a solution of a strong acid or a strong base.	16.5. Strong Acids and Bases
		SAP-9.C Explain the relationship among pH, pOH, and concentrations of all species in a solution of a monoprotic weak acid or weak base.	16.2. Conjugate Acid- Base Pairs 16.6. Weak Acids 16.7. Weak Bases

	SAP-9.D Explain the relationship among the concentrations of major species in a mixture of weak and strong acids and bases.	16.8. Relationship between K _a and K _b 16.9. Acid-Base Properties of Salt Solutions 17.1. The Common-Ion Effect 17.2. Buffers
	SAP-9.E Explain results from the titration of a mono- or polyprotic acid or base solution, in relation to the properties of the solution and its components.	17.3. Acid-Base Titrations
	SAP-9.F Explain the relationship between the strength of an acid or base and the structure of the molecule or ion.	16.9. Acid-Base Properties of Salt Solutions 16.10. Acid-Base Behavior and Chemical Structure
SAP-10 A buffered solution resists changes to its pH when small amounts of acid or base are added.	SAP-10.A Explain the relationship between the predominant form of a weak acid or base in solution at a given pH and the pKa of the conjugate acid or the pK _b of the conjugate base.	16.9. Acid-Base Properties of Salt Solutions 17.2. Buffers 17.3. Acid-Base Titrations
	SAP-10.B Explain the relationship between the ability of a buffer to stabilize pH and the reactions that occur when an acid or a base is added to a buffered solution.	17.2. Buffers

SAP-10.C Identify the pH of a buffer solution based on the identity and concentrations of the conjugate acid-base pair used to create the buffer.	17.2. Buffers
SAP-10.D Explain the relationship between the buffer capacity of a solution and the relative concentrations of the conjugate acid and conjugate base components of the solution.	17.2. Buffers

Unit 9: Applications of Thermodynamics (10 Topics)
AP® Chemistry Course and Exam Description

Big Ideas	Enduring Understandings	Learning Objectives	Chemistry: the Central Science Sections
Energy (ENE)	ENE-4 Some chemical or physical processes cannot occur without intervention.	ENE-4.A Identify the sign and relative magnitude of the entropy change associated with chemical or physical processes.	19.2. Entropy and the Second Law of Thermodynamics 19.3. The Molecular Interpretation of Entropy and the Third Law of Thermodynamics
		ENE-4.B Calculate the entropy change for a chemical or physical process based on the absolute entropies of the species involved in the process.	19.4. Entropy Changes in Chemical Reactions

	ENE-4.C Explain whether a physical or chemical process is thermodynamically favored based on an evaluation of ΔG° .	19.5. Gibbs Free Energy
	ENE-4.D Explain, in terms of kinetics, why a thermodynamically favored reaction might not occur at a measurable rate.	19.6. Free Energy and Temperature
ENE-5 The relationship between ΔG° and K can be used to determine favorability of a chemical or physical transformation.	ENE-5.A Explain whether a process is thermodynamically favored using the relationships between K, ΔG°, and T	19.7. Free Energy and the Equilibrium Constant
	ENE-5.B Explain the relationship between external sources of energy or coupled reactions and their ability to drive thermodynamically unfavorable processes.	19.7. Free Energy and the Equilibrium Constant

ENE-6 Electrical energy can be generated by chemical reactions.	ENE-6.A Explain the relationship between the physical components of an electrochemical cell and the overall operational principles of the cell.	20.3. Voltaic Cells	
		ENE-6.B Explain whether an electrochemical cell is thermodynamically favored, based on its standard cell potential and the constituent half-reactions within the cell.	20.4. Cell Potentials under Standard Conditions 20.5. Free Energy and Redox Reactions
	ENE-6.C Explain the relationship between deviations from standard cell conditions and changes in the cell potential.	20.6. Cell Potentials under Nonstandard Conditions	
	ENE-6.D Calculate the amount of charge flow based on changes in the amounts of reactants and products in an electrochemical cell.	20.9. Electrolysis	