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Unit 1: Polynomial and Rational Functions  

1.1 Change in Tandem   

1.1.A Describe how the input and output values of a function vary together by comparing function values.  

1.1.A 1. A function is a mathematical relation that maps a 
set of input values to a set of output values such that each 
input value is mapped to exactly one output value. The set 
of input values is called the domain of the function, and 
the set of output values is called the range of the function. 
The variable representing input values is called the 
independent variable, and the variable representing output 
values is called the dependent variable. 

Lesson 1.2, pp. 67-84; 
Lesson 1.3, pp. 86-93 

1.1.A.2 The input and output values of a function vary in 
tandem according to the function rule, which can be 
expressed graphically, numerically, analytically, or 
verbally. 

Lesson 1.2, pp. 67-84; 
Lesson 1.5, pp. 105-113; 
Lesson 1.7, pp. 125-138 

1.1.A.3 A function is increasing over an interval of its 
domain if, as the input values increase, the output values 
always increase. That is, for all a and b in the interval, if a 
< b, then f (a) < f (b). 

Lesson 1.2, pp. 67-84. Lesson 1.3, pp. 86-93 

1.1.A.4 A function is decreasing over an interval of its 
domain if, as the input values increase, the output values 
always decrease. That is, for all a and b in the interval, if a 
< b, then f (a) > f (b) 

Lesson 1.2, pp. 67-84; 
Lesson 1.3, pp. 86-93 

1.1.B Construct a graph representing two quantities that vary with respect to each other in a contextual 
scenario. 

1.1.B.1 The graph of a function displays a set of input-
output pairs and shows how the values of the function’s 
input and output values vary.  

Lesson 1.2, pp. 67-84; 
Lesson 1.3, pp. 86-93; 
Lesson 1.7, pp. 125-138 

1.1.B.2 A verbal description of the way aspects of 
phenomena change together can be the basis for 
constructing a graph.  

Lesson 1.3, pp. 86-93; 
Lesson 1.7, pp. 125-138 

1.1.B.3 The graph of a function is concave up on intervals 
in which the rate of change is increasing.  

Lesson 1.2, pp. 67-84; 
Lesson 2.3, pp. 176-189 

 

1.1.B.4 The graph of a function is concave down on 
intervals in which the rate of change is decreasing.  

Lesson 1.2, pp. 67-84; 
Lesson 2.3, pp. 176-189 

 

1.1.B.5 The graph intersects the x-axis when the output 
value is zero. The corresponding input values are said to 
be zeros of the function.  

Lesson 1.1, pp. 52-66; 
Lesson 2.3, pp. 176-189; 
Lesson 2.4, pp. 190-200; 
Lesson 2.5, pp. 201-209 

1.2 Rates of Change 

1.2.A Compare the rates of change at two points using average rates of change near the points.  

1.2.A.1 The average rate of change of a function over an 
interval of the function’s domain is the constant rate of 
change that yields the same change in the output values 
as the function yielded on that interval of the function’s 
domain. It is the ratio of the change in the output values to 
the change in input values over that interval.  

Lesson 2.1, pp. 146-160; 
Lesson 2.2, pp. 161-174; 
Lesson 3.3, pp. 267-275 

1.2.A.2 The rate of change of a function at a point 
quantifies the rate at which output values would change 
were the input values to change at that point. The rate of 
change at a point can be approximated by the average 
rates of change of the function over small intervals 
containing the point, if such values exist. 

Lesson 2.2, pp. 161-174; 
Lesson 2.6, pp. 211-223; 
Lesson 3.3, pp. 267-275 
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1.2.A.3 The rates of change at two points can be 
compared using average rate of change approximations 
over sufficiently small intervals containing each point, if 
such values exist.  

Lesson 2.1, pp. 146-160; 
Lesson 2.2, pp. 161-174 

1.2.B Describe how two quantities vary together at different points and over different intervals of a function.  

1.2.B.1 Rates of change quantify how two quantities vary 
together.  

Lesson 1.2, pp. 67-84; 
Lesson 2.2, pp. 161-174; 
Lesson 2.6, pp. 211-223; 
Lesson 3.3, pp. 267-275; 
Lesson 3.7, pp. 303-313; 
Lesson 4.1, pp. 320-326; 
Lesson 6.2, pp. 474-491 

1.2.B.2 A positive rate of change indicates that as one 
quantity increases or decreases, the other quantity does 
the same. 

Lesson 1.2, pp. 67-84, 7.7; 
Lesson 2.2, pp. 161-174; 
Lesson 6.2, pp. 474-491 

 

 

1.2.B.3 A negative rate of change indicates that as one 
quantity increases, the other decreases. 

Lesson 1.2, pp. 67-84, 7.7; 
Lesson 2.2, pp. 161-174; 
Lesson 6.2, pp. 474-491 

 

 

Topic 1.3 Rates of Change in Linear and Quadratic Functions 

1.3.A Determine the average rates of change for sequences and functions, including linear, quadratic, and 
other function types.  

1.3.A.1 For a linear function, the average rate of change 
over any length input-value interval is constant.  

Lesson 1.7, pp. 125-138; 
Lesson 2.2, pp. 161-174; 
Lesson 2.3, pp. 176-189 

 

1.3.A.2 For a quadratic function, the average rates of 
change over consecutive equal-length input-value 
intervals can be given by a linear function. 

Lesson 2.1, pp. 146-160; 
Lesson 2.2, pp. 161-174; 
Lesson 2.3, pp. 176-189 

 

1.3.A.3 The average rate of change over the closed 
interval [a,b] is the slope of the secant line from the point 
open parenthesis, a comma f of a, close parenthesis, to 
open parenthesis, b comma f of b, close parenthesis. 

Lesson 2.2, pp. 161-174 

1.3.B Determine the change in the average rates of change for linear, quadratic, and other function types.  

1.3.B.1 For a linear function, since the average rates of 
change over consecutive equal-length input-value 
intervals can be given by a constant function, these 
average rates of change for a linear function are changing 
at a rate of zero.  

Lesson 2.2, pp. 161-174 

1.3.B.2 For a quadratic function, since the average rates 
of change over consecutive equal-length input-value 
intervals can be given by a linear function, these average 
rates of change for a quadratic function are changing at a 
constant rate. 

Lesson 2.2, pp. 161-174 

1.3.B.3 When the average rate of change over equal-
length input-value intervals is increasing for all small-
length intervals, the graph of the function is concave up. 
When the average rate of change over equal-length input-
value intervals is decreasing for all small-length intervals, 
the graph of the function is concave down. 

Lesson 2.2, pp. 161-174; 
Lesson 2.3, pp. 176-189 
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Topic 1.4 Polynomial Functions and Rates of Change 

1.4.A Identify key characteristics of polynomial functions related to rates of change.  

1.4.A.1 A nonconstant polynomial function of x is any 
function representation that is equivalent to the analytical 
form p(x) = an,xn+an-1 xn-1 +an-2 xn-2+…+a2x2+a1x+a1x+a0, 
where n is a positive integer, ai is a real number for each i 
from 1 to n, and an is nonzero.  
The polynomial has degree n, the leading term is anxn, and 
the leading coefficient is an. A constant is also a 
polynomial function of degree zero. 

Lesson 2.1, pp. 146-160; 
Lesson 2.3, pp. 176-189 

1.4.A.2 Where a polynomial function switches between 
increasing and decreasing, or at the included endpoint of 
a polynomial with a restricted domain, the polynomial 
function will have a local, or relative, maximum or 
minimum output value. Of all local maxima, the greatest is 
called the global, or absolute, maximum. Likewise, the 
least of all local minima is called the global, or absolute, 
minimum. 

Lesson 1.2, pp. 67-84; 
Lesson 2.3, pp. 176-189; 
Lesson 2.4, pp. 190-200 

1.4.A.3 Between every two distinct real zeros of a 
nonconstant polynomial function, there must be at least 
one input value corresponding to a local maximum or local 
minimum. 

Lesson 2.3, pp. 176-189; 
Lesson 2.4, pp. 190-200 

1.4.A.4 Polynomial functions of an even degree will have 
either a global maximum or a global minimum.  

Lesson 2.3, pp. 176-189; 
Lesson 2.4, pp. 190-200 

 

1.4.A.5 Points of inflection of a polynomial function occur 
at input values where the rate of change of the function 
changes from increasing to decreasing or from decreasing 
to increasing. This occurs where the graph of a polynomial 
function changes from concave up to concave down or 
from concave down to concave up.  

Lesson 2.3, pp. 176-189; 
Lesson 2.4, pp. 190-200 

Topic 1.5 Polynomial Functions and Complex Zeros 

1.5.A Identify key characteristics of a polynomial function related to its zeros when suitable factorizations are 
available or with technology.  

1.5.A.1 If a is a complex number and 𝑝(𝑎) =  0, then 𝑎 is 
called a zero of the polynomial function 𝑝, or a root of 

𝑝(𝑥) =  0. If 𝑎 (𝑥 –  𝑎)is a real number, then is a linear 

factor of 𝑝 if and only if 𝑎 is a zero of 𝑝. 

Lesson 2.4, pp. 190-200; 
Lesson 2.5, pp. 201-209 

1.5.A.2 If a linear factor (𝑥 –  𝑎) is repeated n times, the 
corresponding zero of the polynomial function has a 
multiplicity n. A polynomial function of degree n has 
exactly n complex zeros when counting multiplicities. 

Lesson 2.3, pp. 176-189; 
Lesson 2.4, pp. 190-200; 
Lesson 2.5, pp. 201-209 

1.5.A.3 If 𝑎 is a real zero of a polynomial function 𝑝, then 

the graph of 𝑦 = 𝑝(𝑥)has an 𝑥 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 at the point 
(𝑎, 0). Consequently, real zeros of a polynomial can be 
endpoints for intervals satisfying polynomial inequalities. 

Lesson 2.3, pp. 176-189; 
Lesson 2.4, pp. 190-200; 
Lesson 2.7, pp. 224-234 

1.5.A.4 If 𝑎 +  𝑏𝑖 is a non-real zero of a polynomial 

function 𝑝, then its conjugate 𝑎 −  𝑏𝑖 is also a zero of 𝑝. 

Lesson 2.5, pp. 201-209 

 

 

1.5.A.5 If the real zero, 𝑎, of a polynomial function has 
even multiplicity, then the signs of the output values are 
the same for input values near 𝑥 =  𝑎. For these 

polynomial functions, the graph will be tangent to the 𝑥 −
𝑎𝑥𝑖𝑠 at 𝑥 =  𝑎. 

Lesson 2.4, pp. 190-200 
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1.5.A.6 The degree of a polynomial function can be found 
by examining the successive differences of the output 
values over equal-interval input values. The degree of the 
polynomial function is equal to the least value n for which 
the successive nth differences are constant.  

Lesson 2.3, pp. 176-189 

 

 

 

 

 

1.5.B Determine if a polynomial function is even or odd.  

1.5.B.1 An even function is graphically symmetric over the 
line x = 0 and analytically has the property f(-x) = -x = -f(x). 
If n is even, then a polynomial of the form p(x) = anxn, 
where n ≥ 1 and an ≠ 0, is an even function.  

Lesson 1.2, pp. 67-84; 
Lesson 1.3, pp. 86-93; 
Lesson 2.1, pp. 146-160 

 

 

1.5.B.2 An odd function is graphically symmetric about the 
point (0,0) and analytically has the property f (-x) = -f(x) to 
negative f of x. If n is odd, then a polynomial of the form 
p(x) = anxn, where n ≥ 1 and an ≠ 0, is an odd function. 

Lesson 1.2, pp. 67-84; 
Lesson 1.3, pp. 86-93; 
Lesson 2.1, pp. 146-160 

 

 

Topic 1.6 Polynomial Functions and End Behavior 

1.6.A Describe end behaviors of polynomial functions.  

1.6.A.1 As input values of a nonconstant polynomial 
function increase without bound, the output values will 
either increase or decrease without bound. The 
corresponding mathematical notation is  

lim
𝑥→∞

 𝑝(𝑥) = ∞ or lim
𝑥→∞

 𝑝(𝑥) = −∞ 

 

Lesson 1.2, pp. 67-84; 
Lesson 1.3, pp. 86-93; 
Lesson 2.3, pp. 176-189 

 

 

 

 

1.6.A.2 As input values of a nonconstant polynomial 
function decrease without bound, the output values will 
either increase or decrease without bound. The 
corresponding mathematical notation is  

lim
𝑥→∞

 𝑝(𝑥) = ∞ or lim
𝑥→∞

 𝑝(𝑥) = −∞ 

 

Lesson 1.2, pp. 67-84; 
Lesson 1.3, pp. 86-93; 
Lesson 2.3, pp. 176-189 

 

 

 

1.6.A.3 The degree and sign of the leading term of a 
polynomial determines the end behavior of the polynomial 
function, because as the input values increase or 
decrease without bound, the values of the leading term 
dominate the values of all lower-degree terms. 

Lesson 2.3, pp. 176-189 

 

 

 

 

Topic 1.7 Rational Functions and End Behavior 

1.7.A Describe end behaviors of rational functions.  

1.7.A.1 A rational function is analytically represented as a 
quotient of two polynomial functions and gives a measure 
of the relative size of the polynomial function in the 
numerator compared to the polynomial function in the 
denominator for each value in the rational function’s 
domain.  

Lesson 2.6, pp. 211-223 

1.7.A.2 The end behavior of a rational function will be 
affected most by the polynomial with the greater degree, 
as its values will dominate the values of the rational 
function for input values of large magnitude. For input 
values of large magnitude, a polynomial is dominated by 
its leading term. Therefore, the end behavior of a rational 
function can be understood by examining the 
corresponding quotient of the leading terms. 

Lesson 1.2, pp. 67-84; 
Lesson 2.6, pp. 211-223; 
Lesson 2.7, pp. 224-234 
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1.7.A.3 If the polynomial in the numerator dominates the 
polynomial in the denominator for input values of large 
magnitude, then the quotient of the leading terms is a 
nonconstant polynomial, and the original rational function 
has the end behavior of that polynomial. If that polynomial 
is linear, then the graph of the rational function has a slant 
asymptote parallel to the graph of the line.  

Lesson 2.6, pp. 211-223 

1.7.A.4 If neither polynomial in a rational function 
dominates the other for input values of large magnitude, 
then the quotient of the leading terms is a constant, and 
that constant indicates the location of a horizontal 
asymptote of the graph of the original rational function.  

Lesson 1.2, pp. 67-84; 
Lesson 2.6, pp. 211-223 

1.7.A.5 If the polynomial in the denominator dominates the 
polynomial in the numerator for input values of large 
magnitude, then the quotient of the leading terms is a 
rational function with a constant in the numerator and 
nonconstant polynomial in the denominator, and the graph 
of the original rational function has a horizontal asymptote 
at y = 0. 

Lesson 1.2, pp. 67-84; 
Lesson 2.6, pp. 211-223 

1.7.A.6 When the graph of a rational function r has a 
horizontal asymptote at y=b, where b is a constant, the 
output values of the rational function get arbitrarily close to 
b and stay arbitrarily close to b as input values increase or 
decrease without bound. The corresponding mathematical 
notation is lim

𝑥→∞
 𝑟(𝑥) = 𝑏 or lim

𝑥→−∞
 𝑟(𝑥) = 𝑏 

 

Lesson 1.2, pp. 67-84; 
Lesson 1.3, pp. 86-93; 
Lesson 2.6, pp. 211-223 

Topic 1.8 Rational Functions and Zeros 

1.8.A Determine the zeros of rational functions.  

1.8.A.1 The real zeros of a rational function correspond to 
the real zeros of the numerator for such values in its 
domain. 

Lesson 2.6, pp. 211-223; 
Lesson 2.7, pp. 224-234 

1.8.A.2 The real zeros of both polynomial functions of a 
rational function 𝑟 are endpoints or asymptotes for 
intervals satisfying the rational function inequalities 𝑟(𝑥) ≥
0 or 𝑟(𝑥) ≤ 0. 

Lesson 2.6, pp. 211-223; 
Lesson 2.7, pp. 224-234 

Topic 1.9 Rational Functions and Vertical Asymptotes 

1.9.A Determine vertical asymptotes of graphs of rational functions.  

1.9.A.1 If the value a is a real zero of the polynomial 
function in the denominator of a rational function and is 
not also a real zero of the polynomial function in the 
numerator, then the graph of the rational function has a 
vertical asymptote at x = a. Furthermore, a vertical 
asymptote also occurs at x = a if the multiplicity of a as a 
real zero in the denominator is greater than its multiplicity 
as a real zero in the numerator.  

Lesson 1.2, pp. 67-84; 
Lesson 1.3, pp. 86-93; 
Lesson 2.6, pp. 211-223; 
Lesson 2.7, pp. 224-234 

1.9.A.2 Near a vertical asymptote, 𝑥 = 𝑎, of a rational 
function, the values of the polynomial function in the 
denominator are arbitrarily close to zero, so the values of 
the rational function 𝑟 increase or decrease without bound. 

The corresponding mathematical notation is  lim
𝑥→𝑎+

𝑟(𝑥) =

∞ or lim
𝑥→𝑎+

𝑟(𝑥) = −∞for input values near 𝑎 and greater 

than 𝑎, and lim
𝑥→𝑎−

𝑟(𝑥) = ∞ or lim
𝑥→𝑎−

𝑟(𝑥) = −∞ for input 

values near 𝑎 and less than 𝑎. 

Lesson 1.2, pp. 67-84; 
Lesson 2.6, pp. 211-223; 
Lesson 2.7, pp. 224-234 
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Topic 1.10 Rational Functions and Holes 

1.10.A Determine holes in graphs of rational functions.  

1.10.A.1 If the multiplicity of a real zero in the numerator is 
greater than or equal to its multiplicity in the denominator, 
then the graph of the rational function has a hole at the 
corresponding input value  

Lesson 2.6, pp. 211-223; 
Lesson 2.7, pp. 224-234 

1.10.A.2 If the graph of a rational function r has a hole at x 
= c, then the location of the hole can be determined by 
examining the output values corresponding to input values 
sufficiently close to c. If input values sufficiently close to c 
correspond to output values arbitrarily close to L, then the 
hole is located at the point with coordinates (c, L). The 
corresponding mathematical notation is lim 

𝑥→𝑐
𝑟(𝑥) = 𝐿. It 

should be noted that lim 
𝑥→𝑐−

𝑟(𝑥) =  lim 
𝑥→𝑐+

𝑟(𝑥) = lim 
𝑥→𝑐

𝑟(𝑥) = 𝐿. 

 

Lesson 1.2, pp. 67-84; 
Lesson 2.6, pp. 211-223 

Topic 1.11 Equivalent Representations of Polynomial and Rational Expressions 

1.11.A Rewrite polynomial and rational expressions in equivalent forms.  

1.11.A.1 Because the factored form of a polynomial or 
rational function readily provides information about real 
zeros, it can reveal information about x-intercepts, 
asymptotes, holes, domain, and range.  

Lesson 2.4, pp. 190-200; 
Lesson 2.6, pp. 211-223 

1.11.A.2 The standard form of a polynomial or rational 
function can reveal information about end behaviors of the 
function. 

Lesson 2.3, pp. 176-189; 
Lesson 2.4, pp. 190-200; 
Lesson 2.6, pp. 211-223 

 

1.11.A.3 The information extracted from different analytic 
representations of the same polynomial or rational 
function can be used to answer questions in context.  

Lesson 2.7, pp. 224-234 

 

 

 

1.11.B Determine the quotient of two polynomial functions using long division.  

1.11.B.1 Polynomial long division is an algebraic process 
similar to numerical long division involving a quotient and 
remainder. If the polynomial f is divided by the polynomial 
g, then f can be rewritten as 𝑓(𝑥) = 𝑔(𝑥)𝑞(𝑥) + 𝑟(𝑥), 
where q is the quotient, r is the remainder, and the degree 
of r is less than the degree of g.  

Lesson 2.4, pp. 190-200 

1.11.B.2 The result of polynomial long division is helpful in 
finding equations of slant asymptotes for graphs of rational 
functions.  

Lesson 2.6, pp. 211-223 

 

 

 

1.11.C Rewrite the repeated product of binomials using the binomial theorem.  

1.11.C.1 The binomial theorem utilizes the entries in a 
single row of Pascal’s Triangle to more easily expand 
expressions of the form (a + b)n, including polynomial 
functions of the form p(x) = (x + c)n, where c is a constant. 

Lesson 2.4, pp. 190-200 
 

Topic 1.12 Transformations of Functions 

1.12.A Construct a function that is an additive and/or multiplicative transformation of another function. 

1.12.A.1 The function g(x) = f(x) + k is an additive 
transformation of the function f that results in a vertical 
translation of the graph of f by k units.  

Lesson 1.6, pp. 115-120; 
Lesson 2.1, pp. 146-160; 
Lesson 2.2, pp. 161-174; 
Lesson 2.6, pp. 211-223; 
Lesson 4.4, pp. 349-361; 
Lesson 7.3, pp. 556-564 
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1.12.A.2 The function g(x) = f(x + h) is an additive 
transformation of the function f that results in a horizontal 
translation of the graph of f by −h units.  

Lesson 1.6, pp. 115-120; 
Lesson 2.1, pp. 146-160; 
Lesson 2.2, pp. 161-174; 
Lesson 2.6, pp. 211-223; 
Lesson 4.4, pp. 349-361; 
Lesson 4.5, pp. 362-370; 
Lesson 7.3, pp. 556-564 

1.12.A.3 The function g(x) = af(x), where a ≠ 0, is a 
multiplicative transformation of the function f that results in 
a vertical dilation of the graph of f by a factor of |a|. If a < 0 
the transformation involves a reflection over the x-axis.  

Lesson 1.6, pp. 115-120; 
Lesson 2.1, pp. 146-160; 
Lesson 2.2, pp. 161-174; 
Lesson 2.6, pp. 211-223; 
Lesson 4.4, pp. 349-361; 
Lesson 4.5, pp. 362-370; 
Lesson 7.3, pp. 556-564 

1.12.A.4 The function g(x)=f(bx), where b ≠ 0, is a 
multiplicative transformation of the function f that results in 

a horizontal dilation of the graph of f by a factor of |
1

𝑏
|, If b 

< 0 the transformation involves a reflection over the y-axis.  

Lesson 1.6, pp. 115-120; 
Lesson 2.1, pp. 146-160; 
Lesson 2.2, pp. 161-174; 
Lesson 2.6, pp. 211-223; 
Lesson 4.4, pp. 349-361; 
Lesson 4.5, pp. 362-370; 
Lesson 7.3, pp. 556-564 

1.12.A.5 Additive and multiplicative transformations can 
be combined, resulting in combinations of horizontal and 
vertical translations and dilations.  

Lesson 1.6, pp. 115-120; 
Lesson 2.1, pp. 146-160; 
Lesson 2.2, pp. 161-174; 
Lesson 4.4, pp. 349-361; 
Lesson 4.5, pp. 362-370; 
Lesson 7.3, pp. 556-564 

1.12.A.6 The domain and range of a function that is a 
transformation of a parent function may be different from 
those of the parent function. 

Lesson 1.6, pp. 115-120; 
Lesson 2.1, pp. 146-160; 
Lesson 2.2, pp. 161-174; 
Lesson 4.4, pp. 349-361; 
Lesson 7.3, pp. 556-564 

Topic 1.13 Function Model Selection and Assumption Articulation 

1.13.A Identify an appropriate function type to construct a function model for a given scenario. 

1.13.A.1 Linear functions model data sets or aspects of 
contextual scenarios that demonstrate roughly constant 
rates of change.  

Lesson 1.1, pp. 52-66; 
Lesson 1.7, pp. 125-138 

1.13.A.2 Quadratic functions model data sets or aspects 
of contextual scenarios that demonstrate roughly linear 
rates of change, or data sets that are roughly symmetric 
with a unique maximum or minimum value.  

Lesson 1.7, pp. 125-138 

1.13.A.3 Geometric contexts involving area or two 
dimensions can often be modeled by quadratic functions. 
Geometric contexts involving volume or three dimensions 
can often be modeled by cubic functions.  

Lesson 1.7, pp. 125-138 

1.13.A.4 Polynomial functions model data sets or 
contextual scenarios with multiple real zeros or multiple 
maxima or minima.  

Lesson 2.3, pp. 176-189 

1.13.A.5 A polynomial function of degree n models data 
sets or contextual scenarios that demonstrate roughly 
constant nonzero nth differences.  

Lesson 2.2, pp. 161-174; 
Lesson 2.3, pp. 176-189 

1.13.A.6 A polynomial function of degree n or less can be 
used to model a graph of n + 1 points with distinct input 
values. 

Lesson 2.3, pp. 176-189 
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1.13.A.7 A piecewise-defined function consists of a set of 
functions defined over nonoverlapping domain intervals 
and is useful for modeling a data set or contextual 
scenario that demonstrates different characteristics over 
different intervals. 

Lesson 1.4, pp. 94-104; 
Lesson 1.7, pp. 125-138 

1.13.B Describe assumptions and restrictions related to building a function model. 

1.13.B.1 A model may have underlying assumptions about 
what is consistent in the model.  

Lesson 1.7, pp. 125-138; 
Lesson 3.2, pp. 257-265; 
Lesson 3.3, pp. 267-275 

1.13.B.2 A model may have underlying assumptions about 
how quantities change together. 

Lesson 1.7, pp. 125-138; 
Lesson 3.2, pp. 257-265; 
Lesson 3.3, pp. 267-275 

1.13.B.3 A model may require domain restrictions based 
on mathematical clues, contextual clues, or extreme 
values in the data set. 

Lesson 1.1, pp. 52-66; 
Lesson 1.7, pp. 125-138; 
Lesson 2.7, pp. 224-234; 
Lesson 3.2, pp. 257-265; 
Lesson 3.3, pp. 267-275 

1.13.B.4 A model may require range restrictions, such as 
rounding values, based on mathematical clues, contextual 
clues, or extreme values in the data set. 

Lesson 1.1, pp. 52-66; 
Lesson 1.7, pp. 125-138; 
Lesson 2.7, pp. 224-234; 
Lesson 3.2, pp. 257-265; 
Lesson 3.3, pp. 267-275 

Topic 1.14 Function Model Construction and Application 

1.14.A Construct a linear, quadratic, cubic, quartic, polynomial of degree n, or related piecewise-defined 
function model. 

1.14.A.1 A model can be constructed based on restrictions 
identified in a mathematical or contextual scenario.  

Lesson 1.1, pp. 52-66; 
Lesson 1.7, pp. 125-138; 
Lesson 2.3, pp. 176-189 

 

1.14.A.2 A model of a data set or a contextual scenario 
can be constructed using transformations of the parent 
function. 

Lesson 2.3, pp. 176-189 

1.14.A.3 A model of a data set can be constructed using 
technology and regressions, including linear, quadratic, 
cubic, and quartic regressions. 

Lesson 1.1, pp. 52-66; 
Lesson 1.2, pp. 67-84; 
Lesson 2.1, pp. 146-160; 
Lesson 2.2, pp. 161-174; 
Lesson 2.3, pp. 176-189 

1.14.A.4 A piecewise-defined function model can be 
constructed through a combination of modeling 
techniques. 

Lesson 1.7, pp. 125-138 

1.14.B Construct a rational function model based on a context. 

1.14.B.1 Data sets and aspects of contextual scenarios 
involving quantities that are inversely proportional can 
often be modeled by rational functions. For example, the 
magnitudes of both gravitational force and 
electromagnetic force between objects are inversely 
proportional to the objects’ squared distance. 

Lesson 2.7, pp. 224-234 
 

1.14.C Apply a function model to answer questions about a data set or contextual scenario. 

1.14.C.1 A model can be used to draw conclusions about 
the modeled data set or contextual scenario, including 
answering key questions and predicting values, rates of 
change, average rates of change, and changing rates of 
change. Appropriate units of measure should be extracted 
or inferred from the given context. 

Lesson 1.1, pp. 52-66; 
Lesson 1.7, pp. 125-138; 
Lesson 2.3, pp. 176-189; 
Lesson 2.6, pp. 211-223; 
Lesson 2.7, pp. 224-234 
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UNIT 2 Exponential and Logarithmic Functions 

Topic 2.1 Change in Arithmetic and Geometric Sequences 

2.1.A Express arithmetic sequences found in mathematical and contextual scenarios as functions of the whole 
numbers. 

2.1.A.1 A sequence is a function from the whole numbers 
to the real numbers. Consequently, the graph of a 
sequence consists of discrete points instead of a curve. 

Lesson 3.1, pp. 242-256 

2.1.A.2 Successive terms in an arithmetic sequence have 
a common difference, or constant rate of change. 

Lesson 3.1, pp. 242-256 

2.1.A.3 The general term of an arithmetic sequence with a 
common difference d is denoted by an and is given by an 
= a0 + dn, where a0 is the initial value, or by an = ak + d(n − 
k), where ak is the kth term of the sequence. 

Lesson 3.1, pp. 242-256 

2.1.B Express geometric sequences found in mathematical and contextual scenarios as functions of the whole 
numbers. 

2.1.B.1 Successive terms in a geometric sequence have a 
common ratio, or constant proportional change.  

Lesson 3.1, pp. 242-256 

 

 

2.1.B.2 The general term of a geometric sequence with a 
common ratio r is denoted by gn and is given by gn = g0rn, 
where g0 is the initial value, or by gn = gkr(n−k), where gk is 
the kth term of the sequence. 

Lesson 3.1, pp. 242-256 

2.1.B.3 Increasing arithmetic sequences increase equally 
with each step, whereas increasing geometric sequences 
increase by a larger amount with each successive step. 

Lesson 3.1, pp. 242-256 

Topic 2.2 Change in Linear and Exponential Functions 

2.2.A Construct functions of the real numbers that are comparable to arithmetic and geometric sequences. 

2.2.A.1 Linear functions of the form 𝑓(𝑥) =  𝑏 +  𝑚𝑥 are 

similar to arithmetic sequences of the form, 𝑎𝑛 = 𝑎0 + 𝑑𝑛, 

as both can be expressed as an initial value (b or 𝑎0) plus 
repeated addition of a constant rate of change, the slope 
(m or d).  

Lesson 3.1, pp. 242-256 

2.2.A.2 Similar to arithmetic sequences of the form 𝑎𝑛  =
 𝑎𝑘  +  𝑑(𝑛 –  𝑘), which are based on a known difference, d, 
and a kth term, linear functions can be expressed in the 
form 𝑓(𝑥)  =  𝑦𝑖 +  𝑚(𝑥 –  𝑥𝑖) based on a known slope, m, 

and a point, (𝑥𝑖, 𝑦𝑖 ).  

Lesson 3.1, pp. 242-256 

2.2.A.3 Exponential functions of the form 𝑓(𝑥)  =  𝑎𝑏𝑥 are 

similar to geometric sequences of the 𝑔𝑛 = 𝑔0𝑟
𝑛, as both 

can be expressed as an initial value (𝑎 or 𝑔0) times 

repeated multiplication by a constant proportion (𝑏 or 𝑟).  

Lesson 3.1, pp. 242-256; 
Lesson 3.2, pp. 257-265; 
Lesson 3.3, pp. 267-275 

2.2.A.4 Similar to geometric sequences of the form 𝑔𝑛 =
𝑔𝑘  − 𝑔𝑘  𝑟

(𝑛−𝑘)), which are based on a known ratio, r, and 
a kth term, exponential functions can be expressed in the 

form 𝑓(𝑥)  =  𝑦𝑖  𝑟
(𝑥−𝑥𝑖) based on a known ratio, 𝑟, and a 

point, (𝑥𝑖 , 𝑦𝑖  ).  

Lesson 3.3, pp. 267-275 

2.2.A.5 Sequences and their corresponding functions may 
have different domains. 

Lesson 3.1, pp. 242-256; 
Lesson 3.3, pp. 267-275 

2.2.B Describe similarities and differences between linear and exponential functions. 

2.2.B.1 Over equal-length input-value intervals, if the 
output values of a function change at constant rate, then 
the function is linear; if the output values of a function 
change proportionally, then the function is exponential 

Lesson 3.1, pp. 242-256; 
Lesson 3.3, pp. 267-275 
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2.2.B.2 Linear functions of the form 𝑓(𝑥)  =  𝑏 +  𝑚𝑥 and 
exponential functions of the form 𝑓(𝑥)  =  𝑎𝑏𝑥 can both be 
expressed analytically in terms of an initial value and a 
constant involved with change. However, linear functions 
are based on addition, while exponential functions are 
based on multiplication.  

Lesson 3.1, pp. 242-256; 
Lesson 3.3, pp. 267-275 

2.2.B.3 Arithmetic sequences, linear functions, geometric 
sequences, and exponential functions all have the 
property that they can be determined by two distinct 
sequence or function values. 

Lesson 3.1, pp. 242-256; 
Lesson 3.3, pp. 267-275 

Topic 2.3 Exponential Functions 

2.3.A Identify key characteristics of exponential functions. 

2.3.A.1 The general form of an exponential function is 
𝑓(𝑥)  =  𝑎𝑏𝑥, with the initial value a, where a ≠ 0, and the 

base b, where 𝑏 >  0, and b ≠ 1. When 𝑎 >  0 and 𝑏 >
 1, the exponential function is said to demonstrate 

exponential growth. When 𝑎 >  0 and 0 <  𝑏 <  1, the 
exponential function is said to demonstrate exponential 
decay.  

Lesson 3.2, pp. 257-265; 
Lesson 3.3, pp. 267-275 

2.3.A.2 When the natural numbers are input values in an 
exponential function, the input value specifies the number 
of factors of the base to be applied to the function’s initial 
value. The domain of an exponential function is all real 
numbers. 

Lesson 3.2, pp. 257-265; 
Lesson 3.3, pp. 267-275 

2.3.A.3 Because the output values of exponential 
functions in general form are proportional over equal-
length input-value intervals, exponential functions are 
always increasing or always decreasing, and their graphs 
are always concave up or always concave down. 
Consequently, exponential functions do not have extrema 
except on a closed interval, and their graphs do not have 
points of inflection.  

Lesson 3.2, pp. 257-265; 
Lesson 3.3, pp. 267-275 

2.3.A.4 If the values of the additive transformation function 
𝑔 (𝑥)  =  𝑓 (𝑥)  +  𝑘 of any function 𝑓 are proportional over 

equal-length input-value intervals, then 𝑓 is exponential. 

Lesson 3.3, pp. 267-275 

2.3.A.5 For an exponential function in general form, as the 
input values increase or decrease without bound, the 
output values will increase or decrease without bound or 
will get arbitrarily close to zero. That is, for an exponential 
function in general form, lim

𝑥→±∞
𝑎𝑏𝑥 =  ∞ lim

𝑥→±∞
𝑎𝑏𝑥 = −∞ or 

lim
𝑥→±∞

𝑎𝑏𝑥 =  0  

Lesson 3.2, pp. 257-265; 
Lesson 3.3, pp. 267-275 

Topic 2.4 Exponential Function Manipulation 

2.4.A Rewrite exponential expressions in equivalent forms. 

2.4.A.1 The product property for exponents states that 

𝑏𝑚𝑏𝑛  = 𝑏(𝑚+𝑛). Graphically, this property implies that 
every horizontal translation of an exponential 

function, 𝑓(𝑥)  =  𝑏(𝑥 +𝑘), is equivalent to a vertical dilation, 

𝑓(𝑥) = 𝑏(𝑥+𝑘) = 𝑏𝑥𝑏𝑘 = 𝑎𝑏𝑥, where 𝑎 = 𝑏𝑘.  

Lesson 3.2, pp. 257-265 

2.4.A.2 The power property for exponents states that (bm)n 
= b(mn). Graphically, this property implies that every 
horizontal dilation of an exponential function, f(x) = b(cx), is 
equivalent to a change of the base of an exponential 
function, f(x) = (bc)x, where bc is a constant and c ≠ 0.  

Lesson 3.2, pp. 257-265 
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2.4.A.3 The negative exponent property states that 𝑏−𝑛 =
1

𝑏𝑛
 

 

Lesson 3.2, pp. 257-265 

2.4.A.4 The value of an exponential expression involving 
an exponential unit fraction, such as b(1/k) where k is a 
natural number, is the kth root of b, when it exists. 

Lesson 3.2, pp. 257-265 

Topic 2.5 Exponential Function Context and Data Modeling 

2.5.A Construct a model for situations involving proportional output values over equal-length input-value 
intervals. 

2.5.A.1 Exponential functions model growth patterns 
where successive output values over equal length input-
value intervals are proportional. When the input values are 
whole numbers, exponential functions model situations of 
repeated multiplication of a constant to an initial value. 

Lesson 3.3, pp. 267-275 

2.5.B.2 A constant may need to be added to the 
dependent variable values of a data set to reveal a 
proportional growth pattern. 

Lesson 3.3, pp. 267-275 

2.5.B.3 An exponential function model can be constructed 
from an appropriate ratio and initial value or from two 
input-output pairs. The initial value and the base can be 
found by solving a system of equations resulting from the 
two input-output pairs. 

Lesson 3.3, pp. 267-275 

2.5.A.4 Exponential function models can be constructed 
by applying transformations to f(x) = abx based on 
characteristics of a contextual scenario or data set. 

Lesson 3.3, pp. 267-275 

2.5.A.5 Exponential function models can be constructed 
for a data set with technology using exponential 
regressions. 

Lesson 3.2, pp. 257-265; 
Lesson 3.3, pp. 267-275 

 

 

2.5.A.6 The natural base e, which is approximately 2.718, 
is often used as the base in exponential functions that 
model contextual scenarios. 

Lesson 3.3, pp. 267-275 

2.5.B Apply exponential models to answer questions about a data set or contextual scenario. 

2.5.B.1 For an exponential model in general form f(x) = 
abx, the base of the exponent, b, can be understood as a 
growth factor in successive unit changes in the input 
values and is related to a percent change in context.  

Lesson 3.2, pp. 257-265. Lesson 3.3, pp. 267-275. Lesson 
3.7, pp. 303-313 

2.5.B.2 Equivalent forms of an exponential function can 
reveal different properties of the function. For example, if d 
represents number of days, then the base of f(d) = 2d 
indicates that the quantity increases by a factor of 2 every 
day, but the equivalent form f(d) = (27)(d/7) indicates that the 
quantity increases by a factor of 27 every week.  

Lesson 3.3, pp. 267-275 

2.5.B.3 Exponential models can be used to predict values 
for the dependent variable, depending on the contextual 
constraints on the domain.  

Lesson 3.2, pp. 257-265. Lesson 3.3, pp. 267-275. Lesson 
3.7, pp. 303-313 

 

 

Topic 2.6 Competing Function Model Validation 

2.6.A Construct linear, quadratic, and exponential models based on a data set. 

2.6.A.1 Two variables in a data set that demonstrate a 
slightly changing rate of change can be modeled by linear, 
quadratic, and exponential function models. 

Lesson 1.7, pp. 125-138; 
Lesson 3.2, pp. 257-265; 
Lesson 3.3, pp. 267-275; 
Lesson 3.7, pp. 303-313 
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2.6.A.2 Models can be compared based on contextual 
clues and applicability to determine which model is most 
appropriate. 

Lesson 1.7, pp. 125-138; 
Lesson 3.3, pp. 267-275 

 

2.6.B Validate a model constructed from a data set. 

2.6.B.1 A model is justified as appropriate for a data set if 
the graph of the residuals of a regression, the residual 
plot, appear without pattern.  

Lesson 2.2, pp. 161-174; 
Lesson 3.3, pp. 267-275 

2.6.B.2 The difference between the predicted and actual 
values is the error in the model. Depending on the data 
set and context, it may be more appropriate to have an 
underestimate or overestimate for any given interval. 

Lesson 2.2, pp. 161-174; 
Lesson 3.3, pp. 267-275; 
Lesson 3.7, pp. 303-313 

Topic 2.7 Composition of Functions 

2.7.A Evaluate the composition of two or more functions for given values. 

2.7.A.1 If 𝑓 and 𝑔 are functions, the composite function 
𝑓 ○  𝑔 maps a set of input values to a set of output values 

such that the output values of 𝑔 are used as input values 

of 𝑓. For this reason, the domain of the composite function 
is restricted to those input values of g for which the 
corresponding output value is in the domain of 𝑓. ( 𝑓 ○
 𝑔 )(𝑥) can also be represented as 𝑓 (𝑔 (𝑥)). 

Lesson 1.4, pp. 94-104 

2.7.A.2 Values for the composite function 𝑓 ○  𝑔 can be 
calculated or estimated from the graphical, numerical, 
analytical, or verbal representations of 𝑓 and 𝑔 by using 

output values from 𝑔 as input values for 𝑓.  

Lesson 1.4, pp. 94-104 

2.7.A.3 The composition of functions is not commutative; 
that is, 𝑓 ○  𝑔 and 𝑔 ○  𝑓 are typically different functions; 

therefore, 𝑓 (𝑔 (𝑥)) and 𝑔 ( 𝑓 (𝑥)) are typically different 
values.  

Lesson 1.4, pp. 94-104 

2.7.A.4 If the function 𝑓 (𝑥)  =  𝑥 is composed with any 

function 𝑔, the resulting composite function is the same as 
𝑔; that is, 𝑔 ( 𝑓 (𝑥))  =  𝑓 (𝑔 (𝑥))  =  𝑔 (𝑥). The function 

𝑓 (𝑥)  =  𝑥 is called the identity function. When composing 
two functions, the identify function acts in the same way 
as 0, the additive identity, when adding two numbers and 
1, the multiplicative identity, when multiplying two 
numbers. 

Lesson 1.3, pp. 86-93; 
Lesson 1.4, pp. 94-104 

2.7.B Construct a representation of the composition of two or more functions. 

2.7.B.1 Function composition is useful for relating two 
quantities that are not directly related by an existing 
formula.  

Lesson 1.4, pp. 94-104 

2.7.B.2 When analytic representations of the functions 
𝑓 and 𝑔 are available, an analytic representation of 

𝑓 (𝑔 (𝑥)) can be constructed by substituting 𝑔 (𝑥) for every 

instance of 𝑥 in 𝑓.  

Lesson 1.4, pp. 94-104 

2.7.B.3 A numerical or graphical representation of 𝑓 ○
 𝑔 can often be constructed by calculating or estimating 

values for (𝑥, 𝑓(𝑔 (𝑥))). 

Lesson 1.4, pp. 94-104 

2.7.C Rewrite a given function as a composition of two or more functions. 

2.7.C.1 Functions given analytically can often be 
decomposed into less complicated functions. When 
properly decomposed, the variable in one function should 
replace each instance of the function with which it was 
composed.  

Lesson 1.4, pp. 94-104; 
Lesson 1.6, pp. 115-120 
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2.7.C.2 An additive transformation of a function, 𝑓, that 
results in vertical and horizontal translations can be 
understood as the composition of 𝑔 (𝑥)  =  𝑥 +  𝑘 with 𝑓.  

Lesson 1.6, pp. 115-120 

2.7.C.3 A multiplicative transformation of a function, 𝑓, 
that results in vertical and horizontal dilations can be 
understood as the composition of 𝑔 (𝑥)  =  𝑘𝑥 with 𝑓. 

Lesson 1.6, pp. 115-120 

Topic 2.8 Inverse Functions 

2.8.A Determine the input-output pairs of the inverse of a function. 

2.8.A.1 On a specified domain, a function, 𝑓, has an 
inverse function, or is invertible, if each output value of 𝑓 
is mapped from a unique input value. The domain of a 
function may be restricted in many ways to make the 
function invertible.  

Lesson 1.5, pp. 105-113; 
Lesson 3.4, pp. 276-286; 
Lesson 4.7, pp. 378-386 

2.8.A.2 An inverse function can be thought of as a reverse 
mapping of the function. An inverse function, 𝑓−1, maps 

the output values of a function, 𝑓, on its invertible domain 
to their corresponding input values; that is, if 𝑓 (𝑎)  =  𝑏, 

then 𝑓 −1 (𝑏)  =  𝑎. Alternately, on its invertible domain, if a 

function consists of input-output pairs (𝑎, 𝑏), then the 

inverse function consists of input-output pairs (𝑏, 𝑎). 

Lesson 1.5, pp. 105-113; 
Lesson 3.4, pp. 276-286; 
Lesson 4.7, pp. 378-386 

2.8.B Determine the inverse of a function on an invertible domain. 

2.8.B.1 The composition of a function, 𝑓, and its inverse 

function, 𝑓−1, is the identity function; that is, 𝑓 (𝑓−1 (𝑥))  =
 𝑓− 1 ( 𝑓 (𝑥))  =  𝑥.  

Lesson 1.5, pp. 105-113; 
Lesson 3.4, pp. 276-286; 
Lesson 4.7, pp. 378-386 

2.8.B.2 On a function’s invertible domain, the function’s 
range and domain are the inverse function’s domain and 
range, respectively. The inverse of the table of values of 
𝑦 =  𝑓(𝑥) can be found by reversing the input-output pairs; 

that is, (𝑎, 𝑏) corresponds to (𝑏, 𝑎). 

Lesson 1.5, pp. 105-113; 
Lesson 3.4, pp. 276-286; 
Lesson 4.7, pp. 378-386 

2.8.B.3 The inverse of the graph of the function 𝑦 =  𝑓(𝑥) 
can be found by reversing the roles of the 𝑥 − and 𝑦 −
𝑎𝑥𝑒𝑠; that is, by reflecting the graph of the function over 

the graph of the identity function ℎ(𝑥)  = 𝑥.  

Lesson 1.5, pp. 105-113; 
Lesson 3.4, pp. 276-286; 
Lesson 4.7, pp. 378-386 

2.8.B.4 The inverse of the function can be found by 
determining the inverse operations to reverse the 
mapping. One method for finding the inverse of the 
function f is reversing the roles of x and y in the equation 
𝑦 =  𝑓(𝑥), then solving for 𝑓 − 𝑦 =  1 (𝑥).  

Lesson 1.5, pp. 105-113; 
Lesson 3.4, pp. 276-286; 
Lesson 4.7, pp. 378-386 

2.8.B.5 In addition to limiting the domain of a function to 
obtain an inverse function, contextual restrictions may also 
limit the applicability of an inverse function. 

Lesson 1.5, pp. 105-113; 
Lesson 3.4, pp. 276-286; 
Lesson 4.7, pp. 378-386 

Topic 2.9 Logarithmic Expressions 

2.9.A Evaluate logarithmic expressions. 

2.9.A.1 The logarithmic expression log𝑏 𝑐 is equal to, or 

represents, the value that the base 𝑏 must be 
exponentially raised to in order to obtain the value 𝑐. That 

is, log𝑏 𝑐 = 𝑎 if and only if 𝑏𝑎 = 𝑐, where 𝑎 and 𝑐 are 

constants, 𝑏 > 0, and 𝑏 ≠ 1. (when the base of a 
logarithmic expression is not specified, it is understood as 
the common logarithm with a base of 10) 

Lesson 3.4, pp. 276-286 

2.9.A.2 The values of some logarithmic expressions are 
readily accessible through basic arithmetic while other 
values can be estimated through the use of technology.  

Lesson 3.4, pp. 276-286; 
Lesson 3.5, pp. 287-292 
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2.9.A.3 On a logarithmic scale, each unit represents a 
multiplicative change of the base of the logarithm. For 
example, on a standard scale, the units might be 0, 1, 2, 
…, while on a logarithmic scale, using logarithm base 10, 
the units might be 100, 101, 102, …. 

Lesson 3.6, pp. 293-302 

Topic 2.10 Inverses of Exponential Functions 

2.10.A Construct representations of the inverse of an exponential function with an initial value of 1. 

2.10.A.1 The general form of a logarithmic function is 
𝑓(𝑥) = 𝑎 log𝑏 𝑥, with base 𝑏, where 𝑏 > 0, 𝑏 ≠ 1, and 𝑎 ≠
0. 

Lesson 3.4, pp. 276-286 

2.10.A.2 The way in which input and output values vary 
together have an inverse relationship in exponential and 
logarithmic functions. Output values of general-form 
exponential functions change proportionately as input 
values increase in equal-length intervals. However, input 
values of general-form logarithmic functions change 
proportionately as output values increase in equal-length 
intervals. Alternately, exponential growth is characterized 
by output values changing multiplicatively as input values 
change additively, whereas logarithmic growth is 
characterized by output values changing additively as 
input values change multiplicatively.  

Lesson 3.5, pp. 287-292; 
Lesson 3.6, pp. 293-302 

2.10.A.3 𝑓(𝑥) = log𝑏 𝑥 and (𝑔)𝑥 = 𝑏2, where 𝑏 > 0 and 
𝑏 ≠ 1, are inverse functions. That is, 𝑔(𝑓(𝑥)) = 𝑓(𝑔(𝑥)) =
𝑥. 

Lesson 3.4, pp. 276-286 

 

 

 

2.10.A.4 The graph of the logarithmic function 𝑓(𝑥) =
log𝑏 𝑥, where 𝑏 > 0 and 𝑏 ≠ 1, is a reflection of the graph 

of the exponential function 𝑔(𝑥) = 𝑏𝑥, where 𝑏 > 0 and 

𝑏 ≠ 1, over the graph of the identity function ℎ(𝑥) = 𝑥. 

Lesson 3.4, pp. 276-286; 
Lesson 3.5, pp. 287-292 

2.10.A.5 If (s, t) is an ordered pair of the exponential 
function 𝑔(𝑥) = 𝑏𝑥, where 𝑏 > 0 and 𝑏 ≠ 1, then (t, s) is 

an ordered pair of the logarithmic function 𝑓(𝑥) = log𝑏 𝑥, 

where 𝑏 > 0 and 𝑏 ≠ 1. 

Lesson 3.4, pp. 276-286; 
Lesson 3.5, pp. 287-292 

Topic 2.11 Logarithmic Functions 

2.11.A Identify key characteristics of logarithmic functions. 

2.11.A.1The domain of a logarithmic function in general 
form is any real number greater than zero, and its range is 
all real numbers.  

Lesson 3.4, pp. 276-286; 
Lesson 3.5, pp. 287-292 

 

 

2.11.A.2 Because logarithmic functions are inverses of 
exponential functions, logarithmic functions are also 
always increasing or always decreasing, and their graphs 
are either always concave up or always concave down. 
Consequently, logarithmic functions do not have extrema 
except on a closed interval, and their graphs do not have 
points of inflection.  

Lesson 3.4, pp. 276-286; 
Lesson 3.5, pp. 287-292 

2.11.A.3 The additive transformation function g(x) = f(x + 
k), where k ≠ 0, of a logarithmic function f in general form 
does not have input values that are proportional over 
equal length output-value intervals. However, if the input 
values of the additive transformation function, g(x) = f(x + 
k), of any function f are proportional over equal-length 
output value intervals, then f is logarithmic.  

Lesson 3.6, pp. 293-302; 
Lesson 3.7, pp. 303-313 
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2.11.A.4 With their limited domain, logarithmic functions in 
general form are vertically asymptotic to x = 0, with an end 
behavior that is unbounded. That is, for a logarithmic 
function in general form, lim

𝑥→0+
𝑎𝑙𝑜𝑔𝑏𝑥 = ±∞ and 

lim
𝑥→∞

𝑎𝑙𝑜𝑔𝑏𝑥 = ±∞ 

 

Lesson 3.4, pp. 276-286; 
Lesson 3.5, pp. 287-292 

Topic 2.12 Logarithmic Function Manipulation 

2.12.A Rewrite logarithmic expressions in equivalent forms.  

2.12.A.1 The product property for logarithms states that 
𝑙𝑜𝑔𝑏(𝑥𝑦) =  𝑙𝑜𝑔𝑏𝑥 +  𝑙𝑜𝑔𝑏𝑦. Graphically, this property 
implies that every horizontal dilation of a logarithmic 
function, 𝑓(𝑥)  =  𝑙𝑜𝑔𝑏(𝑘𝑥), is equivalent to a vertical 

translation, 𝑓(𝑥)  =  𝑙𝑜𝑔𝑏(𝑘𝑥)  =  𝑙𝑜𝑔𝑏𝑘 +  𝑙𝑜𝑔𝑏𝑥 =  𝑎 +
 𝑙𝑜𝑔𝑏𝑥, where 𝑎 =  𝑙𝑜𝑔𝑏𝑘. 

Lesson 3.5, pp. 287-292 

2.12.A.2 The power property for logarithms states that 
𝑙𝑜𝑔𝑏𝑥

𝑛 = 𝑙𝑜𝑔𝑏𝑥. Graphically, this property implies that 
raising the input of a logarithmic function to a power, 

𝑓(𝑥)  =  𝑙𝑜𝑔𝑏𝑥
𝑘 , results in a vertical dilation, 𝑓(𝑥 )  =

 𝑙𝑜𝑔𝑏𝑥
𝑘 = 𝑘𝑙𝑜𝑔𝑏𝑥. 

Lesson 3.5, pp. 287-292 

2.12.A.3 The change of base property for logarithms 

states that 𝑙𝑜𝑔𝑏𝑥 =  
𝑙𝑜𝑔𝑎𝑥

𝑙𝑜𝑔𝑎𝑏
 where 𝑎 >  1. and 𝑎 ≠ 0. This 

implies that all logarithmic functions are vertical dilations 
of each other. 

Lesson 3.5, pp. 287-292 

2.12.A.4 The function 𝑓(𝑥)  =  𝑙𝑛𝑥 is a logarithmic function 

with the natural base 𝑒; that is, 𝑙𝑛𝑥 = 𝑙𝑜𝑔𝑒𝑥. 

Lesson 3.4, pp. 276-286 

 

 

 

Topic 2.13 Exponential and Logarithmic Equations and Inequalities 

2.13.A Solve exponential and logarithmic equations and inequalities. 

2.13.A.1 Properties of exponents, properties of logarithms, 
and the inverse relationship between exponential and 
logarithmic functions can be used to solve equations and 
inequalities involving exponents and logarithms.  

Lesson 3.7, pp. 303-313 

2.13.A.2 When solving exponential and logarithmic 
equations found through analytical or graphical methods, 
the results should be examined for extraneous solutions 
precluded by the mathematical or contextual limitations.  

Lesson 3.7, pp. 303-313 

2.13.A.3 Logarithms can be used to rewrite expressions 
involving exponential functions in different ways that may 

reveal helpful information. Specifically, 𝑏𝑥  =  𝑐(𝑙𝑜𝑔𝑐 𝑏)(𝑥). 

Lesson 3.7, pp. 303-313 

 

 

 

2.13.B Construct the inverse function for exponential and logarithmic functions. 

2.13.B.1 The function 𝑓 (𝑥)  =  𝑎𝑏(𝑥 −ℎ)  +  𝑘 is a 
combination of additive transformations of an exponential 
function in general form. The inverse of 𝑦 =  𝑓(𝑥) can be 
found by determining the inverse operations to reverse the 
mapping.  

Lesson 3.4, pp. 276-286; 
Lesson 3.7, pp. 303-313 

2.13.B.2 The function 𝑓 (𝑥)  =  𝑎𝑙𝑜𝑔𝑏 (𝑥 −  ℎ)  +  𝑘 is a 
combination of additive transformations of a logarithmic 
function in general form. The inverse of 𝑦 =  𝑓(𝑥) can be 
found by determining the inverse operations to reverse the 
mapping. 

Lesson 3.4, pp. 276-286; 
Lesson 3.7, pp. 303-313 
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Topic 2.14 Logarithmic Function Context and Data Modeling 

2.14.A Construct a logarithmic function model. 

2.14.A.1 Logarithmic functions are inverses of exponential 
functions and can be used to model situations involving 
proportional growth, or repeated multiplication, where the 
input values change proportionally over equal-length 
output-value intervals. Alternately, if the output value is a 
whole number, it indicates how many times the initial 
value has been multiplied by the proportion.  

Lesson 3.4, pp. 276-286; 
Lesson 3.7, pp. 303-313 

2.14.A.2 A logarithmic function model can be constructed 
from an appropriate proportion and a real zero or from two 
input-output pairs.  

Lesson 3.7, pp. 303-313 

2.14.A.3 Logarithmic function models can be constructed 
by applying transformations to 𝑓 (𝑥) = 𝑎𝑙𝑜𝑔𝑏 𝑥 based on 
characteristics of a context or data set.  

Lesson 3.7, pp. 303-313 

2.14.A.4 Logarithmic function models can be constructed 
for a data set with technology using logarithmic 
regressions.  

Lesson 3.7, pp. 303-313 

2.14.A.5 The natural logarithm function is often useful in 
modeling real-world phenomena.  

Lesson 3.7, pp. 303-313 

 

 

2.14.A.6 Logarithmic function models can be used to 
predict values for the dependent variable. 

Lesson 3.7, pp. 303-313 

 

 

Topic 2.15 Semi-log Plots 

2.15.A Determine if an exponential model is appropriate by examining a semi-log plot of a data set. 

2.15.A.1 In a semi-log plot, one of the axes is 
logarithmically scaled. When the y-axis of a semi-log plot 
is logarithmically scaled, data or functions that 
demonstrate exponential characteristics will appear linear.  

Lesson 3.6, pp. 293-302 

2.15.A.2 An advantage of semi-log plots is that a constant 
never needs to be added to the dependent variable values 
to reveal that an exponential model is appropriate 

Lesson 3.6, pp. 293-302 

2.15.B Construct the linearization of exponential data. 

2.15.B.1 Techniques used to model linear functions can 
be applied to a semi-log graph.  

Lesson 3.6, pp. 293-302 

 

 

2.15.B.2 For an exponential model of the form 𝑦 =  𝑎𝑏𝑥, 
the corresponding linear model for the semi log plot is 𝑦 =
 (𝑙𝑜𝑔𝑛 𝑏)𝑥 +  𝑙𝑜𝑔𝑛 𝑎, where 𝑛 >  0 and 𝑛 ≠ 1. Specifically, 

the linear rate of change is 𝑙𝑜𝑔𝑛 𝑏, and the initial linear 

value is 𝑙𝑜𝑔𝑛 𝑎. 

Lesson 3.6, pp. 293-302 

UNIT 3 Trigonometric and Polar Functions 

Topic 3.1 Periodic Phenomena 

3.1.A Construct graphs of periodic relationships based on verbal representations. 

3.1.A.1 A periodic relationship can be identified between 
two aspects of a context if, as the input values increase, 
the output values demonstrate a repeating pattern over 
successive equal-length intervals.  

Lesson 4.3, pp. 336-348; 
Lesson 4.6, pp. 371-377 

3.1.A.2 The graph of a periodic relationship can be 
constructed from the graph of a single cycle of the 
relationship. 

Lesson 4.3, pp. 336-348; 
Lesson 4.4, pp. 349-361; 
Lesson 4.6, pp. 371-377 
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3.1.B Describe key characteristics of a periodic function based on a verbal representation. 

3.1.B.1 The period of the function is the smallest positive 
value 𝑘 such that 𝑓 (𝑥 + 𝑘) = 𝑓(𝑥) for all 𝑥 in the domain. 
Consequently, the behavior of a periodic function is 
completely determined by any interval of width 𝑘.  

Lesson 4.3, pp. 336-348; 
Lesson 4.4, pp. 349-361 

 

 

 

3.1.B.2 The period can be estimated by investigating 
successive equal-length output values and finding where 
the pattern begins to repeat.  

Lesson 4.3, pp. 336-348; 
Lesson 4.4, pp. 349-361 

 

 

3.1.B.3 Periodic functions take on characteristics of other 
functions, such as intervals of increase and decrease, 
different concavities, and various rates of change. 
However, with periodic functions, all characteristics found 
in one period of the function will be in every period of the 
function. 

Lesson 4.3, pp. 336-348; 
Lesson 4.4, pp. 349-361; 
Lesson 4.6, pp. 371-377 

Topic 3.2 Sine, Cosine, and Tangent 

3.2.A Determine the sine, cosine, and tangent of an angle using the unit circle. 

3.2.A.1 In the coordinate plane, an angle is in standard 
position when the vertex coincides with the origin and one 
ray coincides with the positive 𝑥 − 𝑎𝑥𝑖𝑠. The other ray is 
called the 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑟𝑎𝑦. Positive and negative angle 

measures indicate rotations from the positive 𝑥 − 𝑎𝑥𝑖𝑠 in 
the counterclockwise and clockwise direction, 
respectively. Angles in standard position that share a 
terminal ray differ by an integer number of revolutions.  

Lesson 4.1, pp. 320-326 

3.2.A.2 The radian measure of an angle in standard 
position is the ratio of the length of the arc of a circle 
centered at the origin subtended by the angle to the radius 
of that same circle. For a unit circle, which has radius 1, 
the radian measure is the same as the length of the 
subtended arc.  

Lesson 4.1, pp. 320-326 

3.2.A.3 Given an angle in standard position and a circle 
centered at the origin, there is a point, 𝑃, where the 

terminal ray intersects the circle. The 𝑠𝑖𝑛𝑒 of the angle is 
the ratio of the vertical displacement of 𝑃 from the 𝑥 −
𝑎𝑥𝑖𝑠 to the distance between the origin and point 𝑃. 

Therefore, for a unit circle, the sine of the angle is the 𝑦-

coordinate of point 𝑃. 

Lesson 4.2, pp. 327-335; 
Lesson 4.3, pp. 336-348 

3.2.A.4 Given an angle in standard position and a circle 
centered at the origin, there is a point, 𝑃, where the 
terminal ray intersects the circle. The cosine of the angle 
is the ratio of the horizontal displacement of 𝑃 from the y-

axis to the distance between the origin and point 𝑃. 
Therefore, for a unit circle, the cosine of the angle is the 𝑥-

coordinate of point 𝑃.  

Lesson 4.2, pp. 327-335; 
Lesson 4.3, pp. 336-348 

3.2.A.5 Given an angle in standard position, the 𝑡𝑎𝑛𝑔𝑒𝑛𝑡 
of the angle is the slope, if it exists, of the terminal ray. 
Because the slope of the terminal ray is the ratio of the 
vertical displacement to the horizontal displacement over 
any interval, the tangent of the angle is the ratio of the 𝑦-

coordinate to the 𝑥-coordinate of the point at which the 
terminal ray intersects the unit circle; alternately, it is the 
ratio of the angle’s sine to its cosine. 

Lesson 4.2, pp. 327-335; 
Lesson 4.3, pp. 336-348; 
Lesson 4.5, pp. 362-370 
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pic 3.3 Sine and Cosine Function Values 

3.3.A Determine coordinates of points on a circle centered at the origin. 

3.3.A.1 Given an angle of measure 𝜃 in standard position 

and a circle with radius 𝑟 centered at the origin, there is a 

point, 𝑃, where the terminal ray intersects the circle. The 

coordinates of point 𝑃 are 𝑟𝑐𝑜𝑠𝜃, 𝑟𝑠𝑖𝑛𝜃 

Lesson 4.2, pp. 327-335; 
Lesson 4.3, pp. 336-348 

3.3.A.2 The geometry of isosceles right and equilateral 
triangles, while attending to the signs of the values based 
on the quadrant of the angle, can be used to find exact 
values for the cosine and sine of angles that are multiples 
𝜋

4
 𝑎𝑛𝑑 

𝜋

6
 of radians and whose terminal rays do not lie on 

an axis. 

Lesson 4.2, pp. 327-335; 
Lesson 4.3, pp. 336-348 

Topic 3.4 Sine and Cosine Function Graphs 

3.4.A Construct representations of the sine and cosine functions using the unit circle. 

3.4.A.1 Given an angle of measure 𝜃 in standard position 
and a unit circle centered at the origin, there is a point, 𝑃, 
where the terminal ray intersects the circle. The sine 
function, 𝑓(𝜃) = sin𝜃, gives the 𝑦-coordinate, or vertical 

displacement from the 𝑥-axis, of point 𝑃. The domain of 
the sine function is all real numbers. 

Lesson 1.3, pp. 86-93; 
Lesson 4.2, pp. 327-335; 
Lesson 4.3, pp. 336-348; 
Lesson 4.4, pp. 349-361 

3.4.A.2 As the input values, or angle measures, of the sine 
function increase, the output values oscillate between −1 
and 1, taking every value in between and tracking the 

vertical distance of points on the unit circle from the 𝑥-
axis.  

Lesson 1.3, pp. 86-93; 
Lesson 4.2, pp. 327-335; 
Lesson 4.3, pp. 336-348 

3.4.A.3 Given an angle of measure 𝜃 in standard position 
and a unit circle centered at the origin, there is a point, P, 
where the terminal ray intersects the circle. The cosine 
function, 𝑓(𝜃)  =  𝑐𝑜𝑠𝜃, gives the 𝑥-coordinate, or 

horizontal displacement from the 𝑦-axis, of point 𝑃. The 
domain of the cosine function is all real numbers. 

Lesson 1.3, pp. 86-93; 
Lesson 4.2, pp. 327-335; 
Lesson 4.3, pp. 336-348 

3.4.A.4 As the input values, or angle measures, of the 
cosine function increase, the output values oscillate 
between −1 and 1, taking every value in between and 
tracking the horizontal distance of points on the unit circle 
from the 𝑦-axis. 

Lesson 1.3, pp. 86-93; 
Lesson 4.2, pp. 327-335; 
Lesson 4.3, pp. 336-348; 
Lesson 4.4, pp. 349-361 

Topic 3.5 Sinusoidal Functions 

3.5.A Identify key characteristics of the sine and cosine functions. 

3.5.A.1 A sinusoidal function is any function that involves 
additive and multiplicative transformations of 𝑓(𝜃+)  =
 𝑠𝑖𝑛 𝜃. The sine and cosine functions are both sinusoidal 

functions, with 𝑐𝑜𝑠𝜃 = sin (𝜃 +
𝜋

2
 ) 

Lesson 4.4, pp. 349-361 

3.5.A.2 The period and frequency of a sinusoidal function 
are reciprocals. The period of 𝑓 ( 𝜃)  =  𝑠𝑖𝑛𝜃 and 𝑔 (𝜃 )  =

 𝑐𝑜𝑠𝜃 is 2𝜋, and the frequency is 
1

2𝜋
 

Lesson 4.4, pp. 349-361 

3.5.A.3 The amplitude of a sinusoidal function is half the 
difference between its maximum and minimum values. 
The amplitude of 𝑓 (𝜃 )  =  𝑠𝑖𝑛𝜃 and 𝑔 (𝜃 )  =  𝑐𝑜𝑠𝜃 is 1.  

Lesson 4.4, pp. 349-361 

 

 

3.5.A.4 The midline of the graph of a sinusoidal function is 
determined by the average, or arithmetic mean, of the 
maximum and minimum values of the function. The 
midline of the graphs of 𝑦 =  𝑠𝑖𝑛𝜃 and 𝑦 =  𝑐𝑜𝑠𝜃 𝑖𝑠 𝑦 = 0.  

Lesson 4.4, pp. 349-361 
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3.5.A.5 As input values increase, the graphs of sinusoidal 
functions oscillate between concave down and concave 
up.  

Lesson 1.3, pp. 86-93; 
Lesson 4.4, pp. 349-361 

 

 

 

3.5.A.6 The graph of 𝑦 =  𝑠𝑖𝑛𝜃 has rotational symmetry 
about the origin and is therefore an odd function. The 
graph of 𝑦 =  𝑐𝑜𝑠𝜃 has reflective symmetry over the 𝑦-axis 
and is therefore an even function. 

Lesson 1.3, pp. 86-93; 
Lesson 4.4, pp. 349-361; 
Lesson 4.4, pp. 349-361; 
Lesson 5.1, pp. 395-402 

Topic 3.6 Sinusoidal Function Transformations 

3.6.A Identify the amplitude, vertical shift, period, and phase shift of a sinusoidal function. 

3.6.A.1 Functions that can be written in the form 𝑓 (𝜃 )  =
 𝑎sin(𝑏(𝜃 +  𝑐))  +  𝑑 or 𝑔 (𝜃)  =  𝑎𝑐𝑜𝑠(𝑏( 𝜃 +  𝑐))  +  𝑑, 

where 𝑎, 𝑏, 𝑐, and d are real numbers and 𝑎 ≠  0, are 
sinusoidal functions and are transformations of the sine 
and cosine functions. Additive and multiplicative 
transformations are the same for both sine and cosine 
because the cosine function is a phase shift of the sine 

function by −
𝜋

2
units. 

Lesson 4.4, pp. 349-361; 
Lesson 4.6, pp. 371-377 

3.6.A.2 The graph of the additive transformation 𝑔 (𝜃 )  =
 𝑠𝑖𝑛𝜃 +  𝑑 of the sine function 𝑓 (𝜃 )  =  𝑠𝑖𝑛𝜃 is a vertical 

translation of the graph of 𝑓, including its midline, by 𝑑 
units. The same transformation of the cosine function 
yields the same result.  

Lesson 4.4, pp. 349-361 

3.6.A.3 The graph of the additive transformation 𝑔(𝜃) =
𝑠𝑖𝑛(𝜃 + 𝑐) of the sine function 𝑓 (𝜃)  =  𝑠𝑖𝑛𝜃 is a horizontal 
translation, or phase shift, of the graph of 𝑓 by −𝑐 𝑢𝑛𝑖𝑡𝑠. 
The same transformation of the cosine function yields the 
same result.  

Lesson 4.4, pp. 349-361 

3.6.A.4 The graph of the multiplicative transformation 
𝑔 (𝜃 )  =  𝑎sinθ of the sine function 𝑓 (𝜃)  =  𝑠𝑖𝑛𝜃 is a 

vertical dilation of the graph of 𝑓 and differs in amplitude 
by a factor of |a|. The same transformation of the cosine 
function yields the same result. 

Lesson 4.4, pp. 349-361 

3.6.A.5 The graph of the multiplicative transformation 
𝑔 (𝜃 )  =  𝑠𝑖𝑛(𝑏𝜃) of the sine function 𝑓 (𝜃)  =  𝑠𝑖𝑛𝜃 is a 

horizontal dilation of the graph of 𝑓 and differs in period by 

a factor of |
1

𝑏
|. The same transformation of the cosine 

function yields the same result.  

Lesson 4.4, pp. 349-361 

3.6.A.6 The graph of 𝑦 = 𝑓( 𝜃) = 𝑎𝑠𝑖𝑛(𝑏(𝜃 + 𝑐)) + 𝑑 has 

an amplitude of |𝑎| units, a period of |
1

𝑏
|2𝜋 units, a midline 

vertical shift of 𝑑 units from 𝑦 =  0, and a phase shift of 
−𝑐 units. The same transformations of the cosine function 
yield the same results. 

Lesson 4.4, pp. 349-361 

Topic 3.7 Sinusoidal Function Context and Data Modeling 

3.7.A Construct sinusoidal function models of periodic phenomena. 

3.7.A.1 The smallest interval of input values over which 
the maximum or minimum output values start to repeat, 
that is, the input-value interval between consecutive 
maxima or consecutive minima, can be used to determine 
or estimate the period and frequency for a sinusoidal 
function model.  

Lesson 4.4, pp. 349-361 
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3.7.A.2 The maximum and minimum output values can be 
used to determine or estimate the amplitude and vertical 
shift for a sinusoidal function model.  

Lesson 4.4, pp. 349-361 

 

 

 

3.7.A.3 An actual pair of input-output values can be 
compared to pairs of input-output values produced by a 
sinusoidal function model to determine or estimate a 
phase shift for the model.  

Lesson 4.4, pp. 349-361 

3.7.A.4. Sinusoidal function models can be constructed for 
a data set with technology by estimating key values or 
using sinusoidal regressions.  

Lesson 4.4, pp. 349-361 

3.7.A.5 Sinusoidal functions that model a data set are 
frequently only useful over their contextual domain and 
can be used to predict values of the dependent variable 
from values of the independent variable. 

Lesson 4.4, pp. 349-361 

Topic 3.8 The Tangent Function 

3.8.A Construct representations of the tangent function using the unit circle. 

3.8.A.1 Given an angle of measure 𝜃 in standard position 
and a unit circle centered at the origin, there is a point, 𝑃, 
where the terminal ray intersects the circle. The tangent 
function, 𝑓 (𝜃)  =  𝑡𝑎𝑛𝜃, gives the slope of the terminal 
ray. 

Lesson 4.2, pp. 327-335; 
Lesson 4.3, pp. 336-348; 
Lesson 4.5, pp. 362-370 

3.8.A.2 Because the slope of the terminal ray is the ratio 
of the change in the 𝑦-values to the change in the 𝑥-
values between any two points on the ray, the tangent 
function is also the ratio of the sine function to the cosine 

function. Therefore, 𝑡𝑎𝑛𝜃 =
sin𝜃

𝑐𝑜𝑠𝜃
, where 𝑐𝑜𝑠𝜃 ≠ 0 

Lesson 4.2, pp. 327-335; 
Lesson 4.3, pp. 336-348; 
Lesson 4.5, pp. 362-370 

3.8.B Describe key characteristics of the tangent function. 

3.8.B.1 Because the slope values of the terminal ray 
repeat every one-half revolution of the circle, the tangent 
function has a period of 𝜋.  

Lesson 4.5, pp. 362-370 

 

 

 

3.8.B.2 The tangent function demonstrates periodic 

asymptotic behavior at input values 𝜃 =
𝜋

2
+ 𝑘𝜋, for integer 

values of 𝑘, because 𝑐𝑜𝑠 =  0 at those values.  

Lesson 4.5, pp. 362-370 

3.8.B.3 The tangent function increases and its graph 
changes from concave down to concave up between 
consecutive asymptotes. 

Lesson 4.5, pp. 362-370 

3.8.C Describe additive and multiplicative transformations involving the tangent function. 

3.8.C.1 The graph of the additive transformation 𝑔 (𝜃)  =
 𝑡𝑎𝑛𝜃 +  𝑑 of the tangent function 𝑓 (𝜃 )  =  𝑡𝑎𝑛𝜃 is a 

vertical translation of the graph of 𝑓 and the line 

containing its points of inflection by 𝑑 units.  

Lesson 4.5, pp. 362-370 

3.8.C.2 The graph of the additive transformation 𝑔(𝜃) =
𝑡𝑎𝑛(𝜃 + 𝑐) of the tangent function 𝑓 (𝜃)  =  𝑡𝑎𝑛𝜃 is a 

horizontal translation, or phase shift, of the graph of 𝑓 by 

−𝑐 units.  

Lesson 4.5, pp. 362-370 

3.8.C.3 The graph of the multiplicative 
transformation 𝑔 (𝜃)  =  𝑎𝑡𝑎𝑛𝜃 of the tangent function 
𝑓 (𝜃 )  =  𝑡𝑎𝑛𝜃 is a vertical dilation of the graph of 𝑓 by a 

factor of. If 𝑎 <  0, the transformation involves a reflection 

over the 𝑥-axis.  

Lesson 4.5, pp. 362-370 
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3.8.C.4 The graph of the multiplicative transformation 
𝑔 (𝜃 )  =  𝑡𝑎𝑛(𝑏 𝜃) 𝑜𝑓 the tangent function 𝑓 (𝜃 )  =  𝑡𝑎𝑛𝜃 is 

a horizontal dilation of the graph of 𝑓 and differs in period 

by a factor of |
1

𝑏
|. If 𝑏 <  0, the transformation involves a 

reflection over the 𝑦-axis.  

Lesson 4.5, pp. 362-370 

3.8.C.5 The graph of 𝑦 = 𝑓(𝜃) = 𝑎𝑡𝑎𝑛(𝑏(𝜃 + 𝑐)) + 𝑑 is a 

vertical dilation of the graph of 𝑦 =  𝑡𝑎𝑛𝜃 by a factor of |𝑎|, 

has a period of |
1

𝑏
|𝜋 units, is a vertical shift of the line 

containing the points of inflection of the graph of 𝑦 =
 𝑡𝑎𝑛𝜃 by 𝑑 units, and is a phase shift of −𝑐 units. 

Lesson 4.5, pp. 362-370 

Topic 3.9 Inverse Trigonometric Functions 

3.9.A Construct analytical and graphical representations of the inverse of the sine, cosine, and tangent 
functions over a restricted domain. 

3.9.A.1 For inverse trigonometric functions, the input and 
output values are switched from their corresponding 
trigonometric functions, so the output value of an inverse 
trigonometric function is often interpreted as an angle 
measure and the input is a value in the range of the 
corresponding trigonometric function. 

Lesson 4.7, pp. 378-386 

3.9.A.2 The inverse trigonometric functions are called 
arcsine, arccosine, and arctangent (also represented as 
𝑠𝑖𝑛−1𝑥, 𝑐𝑜𝑠−1𝑥, and 𝑡𝑎𝑛−1𝑥). Because the corresponding 
trigonometric functions are periodic, they are only 
invertible if they have restricted domains. 

Lesson 4.7, pp. 378-386 

3.9.A.3 In order to define their respective inverse 
functions, the domain of the sine function is restricted 

to [ −
𝜋

2
,
𝜋

2
 ], the cosine function to [0, 𝜋 ], and the tangent 

function to (−
𝜋

2
,
𝜋

2
 ) 

Lesson 4.7, pp. 378-386 

Topic 3.10 Trigonometric Equations and Inequalities 

3.10.A Solve equations and inequalities involving trigonometric functions. 

3.10.A.1 Inverse trigonometric functions are useful in 
solving equations and inequalities involving trigonometric 
functions, but solutions may need to be modified due to 
domain restrictions.  

Lesson 4.7, pp. 378-386; 
Lesson 5.1, pp. 395-402 

3.10.A.2 Because trigonometric functions are periodic, 
there are often infinitely many solutions to trigonometric 
equations.  

Lesson 4.7, pp. 378-386; 
Lesson 5.1, pp. 395-402 

3.10.A.3 In trigonometric equations and inequalities 
arising from a contextual scenario, there is often a domain 
restriction that can be implied from the context, which 
limits the number of solutions. 

Lesson 4.7, pp. 378-386; 
Lesson 5.1, pp. 395-402 

Topic 3.11 The Secant, Cosecant, and Cotangent Functions 

3.11.A Identify key characteristics of functions that involve quotients of the sine and cosine functions. 

3.11.A.1 The secant function, 𝑓( 𝜃)  =  𝑠𝑒𝑐𝜃, is the 

reciprocal of the cosine function, where 𝑐𝑜𝑠𝜃 ≠ 0.  

Lesson 4.2, pp. 327-335; 
Lesson 4.3, pp. 336-348; 
Lesson 4.5, pp. 362-370 

3.11.A.2 The cosecant function, 𝑓(𝜃)  =  𝑐𝑠𝑐𝜃, is the 

reciprocal of the sine function, where 𝑠𝑖𝑛𝜃 ≠ 0.  

Lesson 4.2, pp. 327-335; 
Lesson 4.3, pp. 336-348; 
Lesson 4.5, pp. 362-370 

3.11.A.3 The graphs of the secant and cosecant functions 
have vertical asymptotes where cosine and sine are zero, 
respectively, and have a range of (−∞,−1] ∪ [1,∞).  

Lesson 4.5, pp. 362-370 
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3.11.A.4 The cotangent function, 𝑓(𝜃)  =  𝑐𝑜𝑡𝜃, is the 
reciprocal of the tangent function, where 𝑡𝑎𝑛𝜃 ≠ 0. 

Equivalently,𝑐𝑜𝑡𝜃 =
𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃
, where 𝑠𝑖𝑛𝜃 ≠ 0. 

Lesson 4.2, pp. 327-335; 
Lesson 4.3, pp. 336-348; 
Lesson 4.5, pp. 362-370 

3.11.A.5 The graph of the cotangent function has vertical 
asymptotes for domain values where 𝑡𝑎𝑛𝜃 = 0 and is 
decreasing between consecutive asymptotes. 

Lesson 4.5, pp. 362-370 

Topic 3.12 Equivalent Representations of Trigonometric Functions 

3.12.A Rewrite trigonometric expressions in equivalent forms with the Pythagorean identity. 

3.12.A.1 The Pythagorean Theorem can be applied to 
right triangles with points on the unit circle at coordinates 
(𝑐𝑜𝑠𝜃, 𝑠𝑖𝑛𝜃 ), resulting in the Pythagorean identity: 

𝑠𝑖𝑛2𝜃 + 𝑐𝑜𝑠2 𝜃 =  1.  

Lesson 5.1, pp. 395-402; 
Lesson 5.2, pp. 403-409 

3.12.A.2 The Pythagorean identity can be algebraically 
manipulated into other forms involving trigonometric 

functions, such as 𝑡𝑎𝑛2𝜃 =  𝑠𝑒𝑐2𝜃 −  1, and can be used 
to establish other trigonometric relationships, such as 

𝑎𝑟𝑐𝑠𝑖𝑛𝑥 =  𝑎𝑟𝑐𝑐𝑜𝑠(√1 −  𝑥2 ), with appropriate domain 
restrictions. 

Lesson 5.1, pp. 395-402; 
Lesson 5.4, pp. 418-429 

3.12.B Rewrite trigonometric expressions in equivalent forms with sine and cosine sum identities. 

3.12.B.1 The sum identity for sine is 𝑠𝑖𝑛( 𝛼 + 𝛽 )  =
 𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛽 +  𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛽.  

Lesson 5.3, pp. 411-417 

3.12.B.2 The sum identity for cosine is 𝑐𝑜𝑠(𝛼 + 𝛽 ) =
𝑐𝑜𝑠𝛼𝑐𝑜𝑠𝛽 − 𝑠𝑖𝑛𝛼 𝑠𝑖𝑛𝛽.  

Lesson 5.3, pp. 411-417 

3.12.B.3 The sum identities for sine and cosine can also 
be used as difference and double-angle identities.  

Lesson 5.3, pp. 411-417 

3.12.B.4 Properties of trigonometric functions, known 
trigonometric identities, and other algebraic properties can 
be used to verify additional trigonometric identities. 

Lesson 5.2, pp. 403-409; 
Lesson 5.3, pp. 411-417 

3.12.C Solve equations using equivalent analytic representations of trigonometric functions. 

3.12.C.1 A specific equivalent form involving trigonometric 
expressions can make information more accessible. 

Lesson 5.2, pp. 403-409; 
Lesson 5.3, pp. 411-417 

3.12.C.2 Equivalent trigonometric forms may be useful in 
solving trigonometric equations and inequalities. 

Lesson 5.1, pp. 395-402; 
Lesson 5.2, pp. 403-409; 
Lesson 5.3, pp. 411-417 

Topic 3.13 Trigonometry and Polar Coordinates 

3.13.A Determine the location of a point in the plane using both rectangular and polar coordinates. 

3.13.A.1 The polar coordinate system is based on a grid of 
circles centered at the origin and on lines through the 
origin. Polar coordinates are defined as an ordered pair, 
(𝑟, 𝜃), such that |𝑟| represents the radius of the circle on 

which the point lies, and 𝜃 represents the measure of an 
angle in standard position whose terminal ray includes the 
point. In the polar coordinate system, the same point can 
be represented many ways.  

Lesson 5.5, pp. 431-441 

3.13.A.2 The coordinates of a point in the polar coordinate 
system, (𝑟, 𝜃 ), can be converted to coordinates in the 

rectangular coordinate system, (𝑥, 𝑦), using 𝑥 =  𝑟 𝑐𝑜𝑠𝜃 

and 𝑦 =  𝑟 𝑠𝑖𝑛𝜃.  

Lesson 5.5, pp. 431-441 

3.13.A.3 The coordinates of a point in the rectangular 
coordinate system, (x, y), can be converted to coordinates 

in the polar coordinate system, (𝑟, 𝜃 ), using 𝑟 = √𝑥2 + 𝑦2 

and 𝜃 = arctan (
𝑦

𝑥
) for > 0 or 𝜃 = arctan (

𝑦

𝑥
) + 𝜋 for 𝑥 < 0. 

Lesson 5.5, pp. 431-441 
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3.13.A.4 A complex number can be understood as a point 
in the complex plane and can be determined by its 
corresponding rectangular or polar coordinates. When the 
complex number has the rectangular coordinates (𝑎, 𝑏), it 
can be expressed as 𝑎 +  𝑏𝑖. When the complex number 
has polar coordinates (𝑟, 𝜃), it can be expressed as 

(𝑟 𝑐𝑜𝑠𝜃 )  +  𝑖(𝑟 𝑠𝑖𝑛𝜃) 

Lesson 2.4, pp. 190-200; 
Lesson 5.5, pp. 431-441 

Topic 3.14 Polar Function Graphs 

3.14.A Construct graphs of polar functions. 

3.14.A.1 The graph of the function 𝑟 = 𝑓(𝜃) in polar 
coordinates consists of input-output pairs of values where 
the input values are angle measures and the output 
values are radii.  

Lesson 5.6, pp. 442-451 

3.14.A.2 The domain of the polar function 𝑟 = 𝑓(𝜃), given 
graphically, can be restricted to a desired portion of the 
function by selecting endpoints corresponding to the 
desired angle and radius.  

Lesson 5.6, pp. 442-451 

3.14.A.3 When graphing polar functions in the form of 𝑟 =
𝑓(𝜃), changes in input values correspond to changes in 
angle measure from the positive x-axis, and changes in 
output values correspond to changes in distance from the 
origin. 

Lesson 5.6, pp. 442-451 

Topic 3.15 Rates of Change in Polar Functions 

3.15.A Describe characteristics of the graph of a polar function. 

3.15.A.1 If a polar function, 𝑟 = 𝑓(𝜃), is positive and 
increasing or negative and decreasing, then the distance 
between 𝑓(𝜃) and the origin is increasing.  

Lesson 5.6, pp. 442-451 

3.15.A.2 If a polar function, 𝑟 = 𝑓(𝜃), is positive and 
decreasing or negative and increasing, then the distance 
between 𝑓(𝜃) and the origin is decreasing.  

Lesson 5.6, pp. 442-451 

 

 

 

3.15.A.3 For a polar function, 𝑟 = 𝑓(𝜃),, if the function 
changes from increasing to decreasing or decreasing to 
increasing on an interval, then the function has a relative 
extremum on the interval corresponding to a point 
relatively closest to or farthest from the origin.  

Lesson 5.6, pp. 442-451 

3.15.A.4 The average rate of change of r with respect to 𝜃 

over an interval of 𝜃 is the ratio of the change in the radius 

values to the change in 𝜃 over an interval of 𝜃. 
Graphically, the average rate of change indicates the rate 
at which the radius is changing per radian.  

Lesson 5.6, pp. 442-451 

3.15.A.5 The average rate of change of r with respect to 𝜃 
over an interval of 𝜃 can be used to estimate values of the 
function within the interval.  

Lesson 5.6, pp. 442-451 

 

 

 

UNIT 4 Functions Involving Parameters, Vectors, and Matrices 

Topic 4.1 Parametric Functions 

4.1.A Construct a graph or table of values for a parametric function represented analytically. 

4.1.A.1 A parametric function in ℝ2, the set of all ordered 
pairs of two real numbers, consists of a set of two 
parametric equations in which two dependent variables, 𝑥 

and 𝑦, are dependent on a single independent variable, 𝑡, 
called the parameter. 

Lesson 1.5, pp. 105-113; 
Lesson 6.2, pp. 474-491 
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4.1.A.2 Because variables x and y are dependent on the 
independent variable, t the coordinates (xi, yi ) at time ti 
can be written as functions of t and can be expressed as 
the single parametric function f(t) = (x(t), y(t)), where in 
this case x and y are names of two functions.  

Lesson 1.5, pp. 105-113; 
Lesson 6.2, pp. 474-491 

4.1.A.3 A numerical table of values can be generated for 
the parametric function f(t) = (x(t), y(t)) by evaluating xi 
and yi at several values of ti within the domain.  

Lesson 6.2, pp. 474-491 

4.1.A.4 A graph of a parametric function can be sketched 
by connecting several points from the numerical table of 
values in order of increasing value of t.  

Lesson 6.2, pp. 474-491 

 

 

 

4.1.A.5 The domain of the parametric function f is often 
restricted, which results in start and end points on the 
graph of f. 

Lesson 6.2, pp. 474-491 

Topic 4.2 Parametric Functions Modeling Planar Motion 

4.2.A Identify key characteristics of a parametric planar motion function that are related to position. 

4.2.A.1 A parametric function given by f (t) = (x(t), y(t)) can 
be used to model particle motion in the plane. The graph 
of this function indicates the position of a particle at time t.  

Lesson 6.2, pp. 474-491 

4.2.A.2 The horizontal and vertical extrema of a particle’s 
motion can be determined by identifying the maximum and 
minimum values of the functions x(t) and y(t), respectively.  

Lesson 6.2, pp. 474-491 

4.2.A.3 The real zeros of the function x(t) correspond to y-
intercepts, and the real zeros of y(t) correspond to x-
intercepts. 

Lesson 6.2, pp. 474-491 

Topic 4.3 Parametric Functions and Rates of Change 

4.3.A Identify key characteristics of a parametric planar motion function that are related to direction and rate of 
change. 

4.3.A.1 As the parameter increases, the direction of planar 
motion of a particle can be analyzed in terms of x and y 
independently. If x(t) is increasing or decreasing, the 
direction of motion is to the right or left, respectively. If y(t) 
is increasing or decreasing, the direction of motion is up or 
down, respectively.  

Lesson 6.2, pp. 474-491 

4.3.A.2 At any given point in the plane, the direction of 
planar motion may be different for different values of t. 

Lesson 6.2, pp. 474-491 

 

 

4.3.A.3 The same curve in the plane can be parametrized 
in different ways and can be traversed in different 
directions with different parametric functions. 

Lesson 6.2, pp. 474-491; 
Lesson 6.3, pp. 492-502; 
Lesson 6.4, pp. 502-515 

4.3.A.4 Over a given interval [t1, t2 ] within the domain, the 
average rate of change can be computed for x(t) and y(t) 
independently. The ratio of the average rate of change of 
y to the average rate of change of x gives the slope of the 
graph between the points on the curve corresponding to t1 
and t2, so long as the average rate of change of x(t) ≠ 0. 

Lesson 6.2, pp. 474-491 

Topic 4.4 Parametrically Defined Circles and Lines 

4.4.A Express motion around a circle or along a line segment parametrically. 

4.4.A.1 A complete counterclockwise revolution around 
the unit circle that starts and ends at (1, 0) and is centered 
at the origin can be modeled by (x(t), y(t)) = (cos t, sin t) 
with domain 0 ≤ t ≤ 2𝜋.  

Lesson 6.4, pp. 502-515 
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4.4.A.2 Transformations of the parametric function (x(t), 
y(t)) = (cos t, sin t) can model any circular path traversed 
in the plane.  

Lesson 6.4, pp. 502-515 

4.4.A.3 A linear path along the line segment from the point 
(x1, y1) to the point (x2, y2) can be parametrized many 
ways, including using an initial position (x1, y ) and rates of 
change for x with respect to t and y with respect to t. 

Lesson 6.2, pp. 474-491 

Topic 4.5 Implicitly Defined Functions 

4.5.A Construct a graph of an equation involving two variables. 

4.5.A.1 An equation involving two variables can implicitly 
describe one or more functions.  

Lesson 1.4, pp. 94-104; 
Lesson 6.2, pp. 474-491; 
Lesson 6.4, pp. 502-515 

4.5.A.2 An equation involving two variables can be 
graphed by finding solutions to the equation.  

Lesson 6.2, pp. 474-491 

 

 

 

4.5.A.3 Solving for one of the variables in an equation 
involving two variables can define a function whose graph 
is part or all of the graph of the equation. 

Lesson 6.2, pp. 474-491; 
Lesson 6.3, pp. 492-502; 
Lesson 6.4, pp. 502-515 

4.5.B Determine how the two quantities related in an implicitly defined function vary together. 

4.5.B.1 For ordered pairs on the graph of an implicitly 
defined function that are close together, if the ratio of the 
change in the two variables is positive, then the two 
variables simultaneously increase or both decrease; 
conversely, if the ratio is negative, then as one variable 
increases, the other decreases.  

Lesson 6.2, pp. 474-491 

4.5.B.2 The rate of change of x with respect to y or of y 
with respect to x can be zero, indicating vertical or 
horizontal intervals, respectively. 

Lesson 6.2, pp. 474-491 

Topic 4.6 Conic Sections 

4.6.A Represent conic sections with horizontal or vertical symmetry analytically. 

4.6.A.1 A parabola with vertex (h, k) can, if a ≠ 0, be 
represented analytically as x − h = a(y − k)2 if it opens left 
or right, or as y − k = a(x − h)2 if it opens up or down. 

Lesson 6.3, pp. 492-502 

 

 

 

4.6.A.2 An ellipse centered at (h, k) with horizontal radius 
a and vertical radius b can be represented analytically as  
(𝑥−ℎ)2

𝑎2
+
(𝑦−𝑘)2

𝑏2
= 1. A circle is a special case of an ellipse 

where a = b.  

Lesson 6.4, pp. 502-515 

4.6.A.3 A hyperbola centered at (h, k) with vertical and 
horizonal lines of symmetry can be represented 

algebraically as 
(𝑥−ℎ)2

𝑎2
−
(𝑦−𝑘)2

𝑏2
= 1 for a hyperbola opening 

left and right, or as 
(𝑦−𝑘)2

𝑏2
−
(𝑥−ℎ)2

𝑎2
= 1 for a hyperbola 

opening up and down. The asymptotes are 𝑦 − 𝑘 =

±
𝑏

𝑎
(𝑥 − ℎ) 

Lesson 6.5, pp. 516-527 

Topic 4.7 Parametrization of Implicitly Defined Functions 

4.7.A Represent a curve in the plane parametrically. 

4.7.A.1 A parametrization (x(t), y(t)) for an implicitly 
defined function will, when x(t) and y(t) are substituted for 
x and y, respectively, satisfy the corresponding equation 
for every value of t in the domain.  

Lesson 6.2, pp. 474-491; 
Lesson 6.3, pp. 492-502; 
Lesson 6.4, pp. 502-515; 
Lesson 6.5, pp. 516-527 
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4.7.A.2 If f is a function of x, then y= f(x) can be 
parametrized as (x(t), y(t)) = (t, f (t)). If f is invertible, its 
inverse can be parametrized as (x(t), y(t)) = ( f (t), t) for an 
appropriate interval of t. 

Lesson 1.5, pp. 105-113; 
Lesson 6.2, pp. 474-491 

4.7.B Represent conic sections parametrically. 

4.7.B.1 A parabola can be parametrized in the same way 
that any equation that can be solved for x or y can be 
parametrized. Equations that can be solved for x can be 
parametrized as (x(t), y(t)) = ( f (t), t) by solving for x and 
replacing y with t. Equations that can (be solved for y can 
be parametrized as x(t), y(t)) = (t, f (t)) by solving for y and 
replacing x with t.  

Lesson 6.2, pp. 474-491; 
Lesson 6.3, pp. 492-502 

4.7.B.2 An ellipse can be parametrized using the 
trigonometric functions 𝑥(𝑡) = ℎ + 𝑎 cos 𝑡 and 𝑦(𝑡) = 𝑘 +
𝑏 sin 𝑡 for 0 ≤ 𝑡 ≤ 2𝜋. 

Lesson 6.4, pp. 502-515 

 

 

 

 

4.7.B.3 A hyperbola can be parametrized using 
trigonometric functions. For a hyperbola that opens left 
and right, the functions are 𝑥(𝑡) = ℎ + 𝑎 sec 𝑡 and 𝑦(𝑡) =
𝑘 + 𝑏 tan 𝑡 for 0 ≤ 𝑡 ≤ 2𝜋. For a hyperbola that opens up 

and down, the functions are 𝑥(𝑡) = ℎ + 𝑎 tan 𝑡 and 𝑦(𝑡) =
𝑘 + 𝑏 sec 𝑡 for 0 ≤ 𝑡 ≤ 2𝜋. 

Lesson 6.5, pp. 516-527 

Topic 4.8 Vectors 

4.8.A Identify characteristics of a vector. 

4.8.A.1 A vector is a directed line segment. When a vector 
is placed in the plane, the point at the beginning of the line 
segment is called the tail, and the point at the end of the 
line segment is called the head. The length of the line 
segment is the magnitude of the vector.. 

Lesson 6.1, pp. 458-472 

 

 

 

 

 

4.8.A.2 A vector 
𝑃1𝑃2
→   with two components can be plotted 

in the xy-plane from P1 = (x1, y1) to P2 = (x2, y2 ). The 
vector is identified by a and b, where a = x2 − x1 and b = y2 
− y1. The vector can be expressed as 〈𝑎, 𝑏〉. A zero 

vector 〈0, 0〉 is the trivial case when 𝑃1  =  𝑃2. 

Lesson 6.1, pp. 458-472 

4.8.A.3 The direction of the vector is parallel to the line 
segment from the origin to the point with coordinates (a, 
b). The magnitude of the vector is the square root of the 
sum of the squares of the components.  

Lesson 6.1, pp. 458-472 

 

 

 

 

4.8.A.4 For a vector represented geometrically in the 
plane, the components of the vector can be found using 
trigonometry 

Lesson 6.1, pp. 458-472 

 

 

 

 

4.8.B Determine sums and products involving vectors. 

4.8.B.1 The multiplication of a constant and a vector 
results in a new vector whose components are found by 
multiplying the constant by each of the components of the 
original vector. The new vector is parallel to the original 
vector. 

Lesson 6.1, pp. 458-472 
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4.8.B.2 The sum of two vectors in ℝ2 is a new vector 
whose components are found by adding the 
corresponding components of the original vectors. The 
new vector can be represented graphically as a vector 
whose tail corresponds to the tail of the first vector and 
whose head corresponds to the head of the second vector 
when the second vector’s tail is located at the first vector’s 
head. 

Lesson 6.1, pp. 458-472 

4.8.B.3 The dot product of two vectors is the sum of the 
products of their corresponding components. That is, 
〈𝑎1, 𝑏1〉 〈𝑎2, 𝑏2〉  =  𝑎1𝑎2 + 𝑏1𝑏2 

Lesson 6.1, pp. 458-472 

4.8.C Determine a unit vector for a given vector. 

4.8.C.1 A unit vector is a vector of magnitude 1. A unit 
vector in the same direction as a given nonzero vector can 
be found by scalar multiplying the vector by the reciprocal 
of its magnitude.  

Lesson 6.1, pp. 458-472 

4.8.C.2 The vector 〈𝑎, 𝑏〉 can be expressed as 𝑎𝑖 + 𝑏𝑗 in 

ℝ2, where 𝑖 and 𝑗 are unit vectors in the 𝑥 and 𝑦 
directions, respectively. That is, 𝑖 = 〈1, 0〉 and 𝑗 = 〈0, 1〉. 

Lesson 6.1, pp. 458-472 

4.8.D Determine angle measures between vectors and magnitudes of vectors involved in vector addition. 

4.8.D.1 The dot product is geometrically equivalent to the 
product of the magnitudes of the two vectors and the 
cosine of the angle between them. Therefore, if the dot 
product of two nonzero vectors is zero, then the vectors 
are perpendicular.  

Lesson 6.1, pp. 458-472 

4.8.D.2 The Law of Sines and Law of Cosines can be 
used to determine side lengths and angle measures of 
triangles formed by vector addition. 

Lesson 5.4, pp. 418-429; 
Lesson 6.1, pp. 458-472 

Topic 4.9 Vector-Valued Functions 

4.9.A Represent planar motion in terms of vector-valued functions. 

4.9.A.1 The position of a particle moving in a plane that is 
given by the parametric function 𝑓(𝑡)  =  (𝑥(𝑡), 𝑦(𝑡)) may 

be expressed as a vector-valued function, 𝑝(𝑡) = 𝑥(𝑡)

𝑖
→+ 𝑦(𝑡)

𝑗
→ or 𝑝(𝑡)  = 〈𝑥(𝑡), 𝑦(𝑡) 〉. The magnitude of the 

position vector at time t gives the distance of the particle 
from the origin.  

Lesson 6.2, pp. 474-491 

4.9.A.2 The vector-valued function 𝑣(𝑡) = 〈𝑥(𝑡), 𝑦(𝑡)〉 can 
be used to express the velocity of a particle moving in a 
plane at different times, t. At time t, the sign of x(t) 
indicates if the particle is moving right or left, and the sign 
of y(t) indicates if the particle is moving up or down. The 
magnitude of the velocity vector at time t gives the speed 
of the particle. 

Lesson 6.2, pp. 474-491 

Topic 4.10 Matrices 

4.10.A Determine the product of two matrices. 

4.10.A.1 An n × m matrix is an array consisting of n rows 
and m columns.  

Lesson 7.1, pp. 534-545 

4.10.A.2 Two matrices can be multiplied if the number of 
columns in the first matrix equals the number of rows in 
the second matrix. The product of the matrices is a new 
matrix in which the component in the ith row and jth 
column is the dot product of the ith row of the first matrix 
and the jth column of the second matrix. 

Lesson 7.1, pp. 534-545 
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Topic 4.11 The Inverse and Determinant of a Matrix 

4.11.A Determine the inverse of a 2 × 2 matrix. 

4.11.A.1 The identity matrix, I, is a square matrix 
consisting of 1s on the diagonal from the top left to bottom 
right and 0s everywhere else.  

Lesson 7.1, pp. 534-545 

4.11.A.2 Multiplying a square matrix by its corresponding 
identity matrix results in the original square matrix.  

Lesson 7.1, pp. 534-545 

 

4.11.A.3 The product of a square matrix and its inverse, 
when it exists, is the identity matrix of the same size.  

Lesson 7.1, pp. 534-545 

4.11.A.4 The inverse of a 2 × 2 matrix, when it exists, can 
be calculated with or without technology. 

Lesson 7.1, pp. 534-545 

4.11.B Apply the value of the determinant to invertibility and vectors. 

4.11.B.1 The determinant of the matrix A = [
𝑎 𝑏
𝑐 𝑑

] is  

ad − bc. The determinant can be calculated with or without 
technology and is denoted det(A). 

Lesson 7.1, pp. 534-545 

4.11.B.2 If a 2 × 2 matrix consists of two column or row 

vectors from ℝ2, then the nonzero absolute value of the 
determinant of the matrix is the area of the parallelogram 
spanned by the vectors represented in the columns or 
rows of the matrix. If the determinant equals 0, then the 
vectors are parallel. 

Lesson 7.1, pp. 534-545 

4.11.B.3 The square matrix A has an inverse if and only if 
det(A) ≠ 0. 

Lesson 7.1, pp. 534-545 

 

 

Topic 4.12 Linear Transformations and Matrices 

4.12.A Determine the output vectors of a linear transformation using a 2 × 2 matrix. 

4.12.A.1 A linear transformation is a function that maps an 
input vector to an output vector such that each component 
of the output vector is the sum of constant multiples of the 
input vector components.  

Lesson 7.2, pp. 546-555 

4.12.A.2 A linear transformation will map the zero vector 
to the zero vector.  

Lesson 7.2, pp. 546-555 

 

 

4.12.A.3 A single vector in ℝ2 can be expressed as a 

2 × 1 matrix. A set of 𝑛 vectors in ℝ2 can be expressed as 
a 2 × 𝑛 matrix. 

Lesson 7.2, pp. 546-555; 
Lesson 7.3, pp. 556-564 

4.12.A.4 For a linear transformation, 𝐿, from ℝ2 to ℝ2, 
there is a unique 2 × 2 matrix, 𝐴, such that 𝐿(�⃗�) = 𝐴�⃗� for 

vectors in ℝ2. Conversely, for a given 2 × 2 matrix, 𝐴, the 

function 𝐿(�⃗�) = 𝐴�⃗� is a linear transformation from ℝ2 to 

ℝ2. 

Lesson 7.2, pp. 546-555; 
Lesson 7.3, pp. 556-564 

4.12.A.5 Multiplication of a 2 × 2 transformation matrix, 𝐴, 

and a 2 × 𝑛 matrix of 𝑛 input vectors gives a 2 × 𝑛 matrix 
of the 𝑛 output vectors for the linear transformation 𝐿(�⃗�) =
𝐴�⃗�. 

Lesson 7.2, pp. 546-555; 
Lesson 7.3, pp. 556-564 

Topic 4.13 Matrices as Functions 

4.13.A Determine the association between a linear transformation and a matrix. 

4.13.A.1 The linear transformation mapping 〈𝑥, 𝑦〉+ to 
〈𝑎11𝑥 + 𝑎12𝑦, 𝑎21𝑥 + 𝑎22𝑦〉 is associated with the matrix 

[
𝑎11 𝑎12
𝑎21 𝑎22

]. 

 

Lesson 7.3, pp. 556-564 
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4.13.A.2 The mapping of the unit vectors in a linear 
transformation provides valuable information for 
determining the associated matrix.  

Lesson 7.3, pp. 556-564 

4.13.A.3 The matrix [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] is associated with a 

linear transformation of vectors that rotates every vector 
an angle 𝜃 counterclockwise about the origin.  

Lesson 7.3, pp. 556-564 

4.13.A.4 The absolute value of the determinant of a 2 × 2 
transformation matrix gives the magnitude of the dilation 

of regions in ℝ2 under the transformation. 

Lesson 7.3, pp. 556-564 

4.13.B Determine the composition of two linear transformations. 

4.13.B.1 The composition of two linear transformations is 
a linear transformation.  

Lesson 7.3, pp. 556-564 

4.13.B.2 The matrix associated with the composition of 
two linear transformations is the product of the matrices 
associated with each linear transformation. Lesson 7.3, pp. 556-564 

4.13.C Determine the inverse of a linear transformation. 

4.13.C.1 Two linear transformations are inverses if their 
composition maps any vector to itself.  Lesson 7.3, pp. 556-564 

4.13.C.2 If linear transformation, 𝐿, is given by 𝐿(�⃗�) = 𝐴�⃗�, 

then its inverse transformation is given by 𝐿−1(�⃗�) = 𝐴−1�⃗�, 

where is the inverse of the matrix 𝐴. Lesson 7.3, pp. 556-564 

Topic 4.14 Matrices Modeling Contexts 

4.14.A Construct a model of a scenario involving transitions between two states using matrices. 

4.14.A.1 A contextual scenario can indicate the rate of 
transitions between states as percent changes. A matrix 
can be constructed based on these rates to model how 
states change over discrete intervals. 

Lesson 7.4, pp. 565-573 
 

4.14.B Apply matrix models to predict future and past states for n transition steps. 

4.14.B.1 The product of a matrix that models transitions 
between states and a corresponding state vector can 
predict future states.  Lesson 7.4, pp. 565-573 

4.14.B.2 Repeated multiplication of a matrix that models 
the transitions between states and corresponding resultant 
state vectors can predict the steady state, a distribution 
between states that does not change from one step to the 
next.  Lesson 7.4, pp. 565-573 

4.14.B.3 The product of the inverse of a matrix that 
models transitions between states and a corresponding 
state vector can predict past states. Lesson 7.4, pp. 565-573 

 


